14,498 research outputs found

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    On Lorentz invariance and supersymmetry of four particle scattering amplitudes in SNR8S^N\R^8 orbifold sigma model

    Get PDF
    The SNR8S^N\R^8 supersymmetric orbifold sigma model is expected to describe the IR limit of the Matrix string theory. In the framework of the model the type IIA string interaction is governed by a vertex which was recently proposed by R.Dijkgraaf, E.Verlinde and H.Verlinde. By using this interaction vertex we derive all four particle scattering amplitudes directly from the orbifold model in the large NN limit.Comment: Latex, 23 page

    Dynamics of test bodies with spin in de Sitter spacetime

    Full text link
    We study the motion of spinning test bodies in the de Sitter spacetime of constant positive curvature. With the help of the 10 Killing vectors, we derive the 4-momentum and the tensor of spin explicitly in terms of the spacetime coordinates. However, in order to find the actual trajectories, one needs to impose the so-called supplementary condition. We discuss the dynamics of spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma

    Asymmetric Non-Abelian Orbifolds and Model Building

    Full text link
    The rules for the free fermionic string model construction are extended to include general non-abelian orbifold constructions that go beyond the real fermionic approach. This generalization is also applied to the asymmetric orbifold rules recently introduced. These non-abelian orbifold rules are quite easy to use. Examples are given to illustrate their applications.Comment: 30 pages, Revtex 3.

    Evidence for a Galactic gamma ray halo

    Get PDF
    We present quantitative statistical evidence for a γ\gamma-ray emission halo surrounding the Galaxy. Maps of the emission are derived. EGRET data were analyzed in a wavelet-based non-parametric hypothesis testing framework, using a model of expected diffuse (Galactic + isotropic) emission as a null hypothesis. The results show a statistically significant large scale halo surrounding the center of the Milky Way as seen from Earth. The halo flux at high latitudes is somewhat smaller than the isotropic gamma-ray flux at the same energy, though of the same order (O(10^(-7)--10^(-6)) ph/cm^2/s/sr above 1 GeV).Comment: Final version accepted for publication in New Astronomy. Some additional results/discussion included, along with entirely revised figures. 19 pages, 15 figures, AASTeX. Better quality figs (PS and JPEG) are available at http://tigre.ucr.edu/halo/paper.htm

    Governing body nurses' experiences of clinical commissioning groups: an observational study of two clinical commissioning groups (CCGs) in England

    Get PDF
    Clinical commissioning groups (CCGs) were set up under the Health & Social Care Act (2012) in England to commission healthcare services for local communities. Governing body nurses (GBNs) provide nursing leadership to commissioning services on CCGs. Little is known about how nurses function on clinical commissioning groups. We conducted observations of seven formal meetings, three informal observation sessions, and seven interviews from January 2015 to July 2015 in two CCGs in the South of England. Implicit in the GBN role is the enduring and contested assumption that nurses embody the values of caring, perception and compassion. This assumption undermines the authority of nurses in multidisciplinary teams where authority is traditionally clinically based. Emerging roles within CCGs are not based on clinical expertise but on well-established new public management concepts which promote governance over clinically based authority. While GBNS claim an authority located in clinical and managerial expertise, this is contested by members of the CCG and external stakeholders irrespective of whether it is aligned with clinical knowledge and practice or with new forms of management, as both disregard the type of expertise nurses in commissioning embody. Key words: case study; clinical commissioning groups; governing body nurses; leadership; authority; observation

    Nurses’ experiences of clinical commissioning group boards

    Get PDF
    The following paper is the first in a series of three papers to highlight current practice among governing body nurses, that is, nurses who hold the statutory role of nurse member on clinical commissioning groups in England. In this paper we present findings from a small pilot study into these nurses’ experiences of Clinical Commissioning Groups. Their roles have emerged at a time of organisational change and in a period following extensive criticism of nursing and nurses in the media. We suggest that nurses’ roles and experiences are affected by these contextual ‘events’ and by the emerging structures and diversity of clinical commissioning groups. We argue that governing body nurses’ effectiveness in leading nurses and nursing on clinical commissioning groups may be affected by their relationships with other nurses, especially senior nurses, within clinical commissioning group localities. We suggest that it is timely to evaluate the effectiveness of statutory nurse member roles in influencing decision making on Clinical Commissioning Groups
    • …
    corecore