14,374 research outputs found

    A Simple Business-Cycle Model with Schumpeterian Features

    Get PDF
    We develop a dynamic general equilibrium model of imperfect competition where a sunk cost of creating a new product regulates the type of entry that dominates in the economy: new products or more competition in existing industries. Considering the process of product innovation is irreversible, introduces hysteresis in the business cycle. Expansionary shocks may lead the economy to a new ‘prosperity plateau,’ but contractionary shocks only affect the market power of mature industriesEntry, Hysteresis, Mark-up

    A Simple Business-Cycle Model with Schumpeterian Features

    Get PDF
    We develop a dynamic general equilibrium model of imperfect competition where a sunk cost of creating a new product regulates the type of entry that dominates in the economy: new products or more competition in existing industries. Considering the process of product innovation is irreversible, introduces hysteresis in the business cycle. Expansionary shocks may lead the economy to a new 'prosperity plateau,' but contractionary shocks only affect the market power of mature industries.Entry; hysteresis, mark-up

    Device and method for frictionally testing materials for ignitability

    Get PDF
    Test apparatus for determining ignition characteristics of various metal in oxidizer environments simulating operating conditions for materials is invented. The test apparatus has a chamber through which the oxidizing agent flows, and means for mounting a stationary test sample therein, a powered, rotating shaft in the chamber rigidly mounts a second test sample. The shaft is axially movable to bring the samples into frictional engagement and heated to the ignition point. Instrumentation connected to the apparatus provides for observation of temperatures, pressures, loads on and speeds of the rotating shaft, and torques whereby components of stressed oxygen systems can be selected which will avoid accidental fires under working conditions

    Spinning test particles and clock effect in Schwarzschild spacetime

    Full text link
    We study the behaviour of spinning test particles in the Schwarzschild spacetime. Using Mathisson-Papapetrou equations of motion we confine our attention to spatially circular orbits and search for observable effects which could eventually discriminate among the standard supplementary conditions namely the Corinaldesi-Papapetrou, Pirani and Tulczyjew. We find that if the world line chosen for the multipole reduction and whose unit tangent we denote as UU is a circular orbit then also the generalized momentum PP of the spinning test particle is tangent to a circular orbit even though PP and UU are not parallel four-vectors. These orbits are shown to exist because the spin induced tidal forces provide the required acceleration no matter what supplementary condition we select. Of course, in the limit of a small spin the particle's orbit is close of being a circular geodesic and the (small) deviation of the angular velocities from the geodesic values can be of an arbitrary sign, corresponding to the possible spin-up and spin-down alignment to the z-axis. When two spinning particles orbit around a gravitating source in opposite directions, they make one loop with respect to a given static observer with different arrival times. This difference is termed clock effect. We find that a nonzero gravitomagnetic clock effect appears for oppositely orbiting both spin-up or spin-down particles even in the Schwarzschild spacetime. This allows us to establish a formal analogy with the case of (spin-less) geodesics on the equatorial plane of the Kerr spacetime. This result can be verified experimentally.Comment: IOP macros, eps figures n. 2, to appear on Classical and Quantum gravity, 200

    Multi-jet cross sections at NLO with BlackHat and Sherpa

    Full text link
    In this talk, we report on a recent next-to-leading order QCD calculation of the production of a W boson in association with three jets at hadron colliders. The computation is performed by combining two programs, BlackHat for the computation of the virtual one-loop matrix elements and Sherpa for the real emission part.Comment: 4 pages, contribution to the proceedings of the XLIIIth Rencontres de Moriond (QCD

    Next-to-Leading Order Jet Physics with BlackHat

    Get PDF
    We present several results obtained using the BlackHat next-to-leading order QCD program library, in conjunction with SHERPA. In particular, we present distributions for vector boson plus 1,2,3-jet production at the Tevatron and at the asymptotic running energy of the Large Hadron Collider, including new Z+3-jet distributions. The Z+2-jet predictions for the second-jet P_T distribution are compared to CDF data. We present the jet-emission probability at NLO in W+2-jet events at the LHC, where the tagging jets are taken to be the ones furthest apart in pseudorapidity. We analyze further the large left-handed W polarization, identified in our previous study, for W bosons produced at high P_T at the LHC.Comment: Presented at RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology), October 25 - 30 2009, Ascona, Switzerland}, 12 pages, 9 figures, LaTeX, v2 updated small correction to polarization effect plo

    Color-dressed recursive relations for multi-parton amplitudes

    Get PDF
    Remarkable progress inspired by twistors has lead to very simple analytic expressions and to new recursive relations for multi-parton color-ordered amplitudes. We show how such relations can be extended to include color and present the corresponding color-dressed formulation for the Berends-Giele, BCF and a new kind of CSW recursive relations. A detailed comparison of the numerical efficiency of the different approaches to the calculation of multi-parton cross sections is performed.Comment: 31 pages, 4 figures, 6 table

    Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects

    Full text link
    The inverse square law of gravity is poorly probed by experimental tests at distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and 11 spacecraft have shown an unmodeled acceleration directed toward the Sun which was not explained by any obvious spacecraft systematics, and occurred when at distances greater than 20 AUs from the Sun. If this acceleration represents a departure from Newtonian gravity or is indicative of an additional mass distribution in the outer solar system, it should be detectable in the orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from Newtonian gravity, we have selected a well observed sample of TNOs found orbiting between 20 and 100 AU from the Sun. By examining their orbits with modified orbital fitting software, we place tight limits on the perturbations of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro

    A simple business-cycle model with schumpeterian features

    Get PDF
    We develop a dynamic general equilibrium model of imperfect competition where a sunk cost of creating a new product regulates the type of entry that dominates in the economy: new products or more competition in existing industries. Considering the process of product innovation is irreversible, introduces hysteresis in the business cycle. Expansionary shocks may lead the economy to a new 'prosperity plateau,' but contractionary shocks only affect the market power of mature industries
    • 

    corecore