752 research outputs found

    Prevention of poxvirus infection by tetrapyrroles

    Get PDF
    BACKGROUND: Prevention of poxvirus infection is a topic of great current interest. We report inhibition of vaccinia virus in cell culture by porphyrins and phthalocyanines. Most previous work on the inhibition of viruses with tetrapyrroles has involved photodynamic mechanisms. The current study, however, investigates light-independent inhibition activity. METHODS: The Western Reserve (WR) and International Health Department-J (IHD-J) strains of vaccinia virus were used. Virucidal and antiviral activities as well as the cytotoxicity of test compounds were determined. RESULTS: Examples of active compounds include zinc protoporphyrin, copper hematoporphyrin, meso(2,6-dihydroxyphenyl)porphyrin, the sulfonated tetra-1-naphthyl and tetra-1-anthracenylporphyrins, selected sulfonated derivatives of halogenated tetraphenyl porphyrins and the copper chelate of tetrasulfonated phthalocyanine. EC(50 )values for the most active compounds are as low as 0.05 µg/mL (40 nM). One of the most active compounds was the neutral meso(2,6-dihydroxyphenyl)porphyrin, indicating that the compounds do not have to be negatively charged to be active. CONCLUSIONS: Porphyrins and phthalocyanines have been found to be potent inhibitors of infection by vaccinia virus in cell culture. These tetrapyrroles were found to be active against two different virus strains, and against both enveloped and non-enveloped forms of the virus, indicating that these compounds may be broadly effective in their ability to inhibit poxvirus infection

    Tuning photochemistry:substituent effects on πσ* state mediated bond fission in thioanisoles

    Get PDF
    The electronic branching in the thiophenoxyl radicals formed by UV photolysis of thioanisole can be tuned by placing electron withdrawing/donating substituents at the 4-position.</p

    Charting a Course for Smartphones and Wearables to Transform Population Health Research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the better

    Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    Get PDF
    We report on a systematic experimental study of the heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single-mode optical fibers. We define the correlated-mode coupling efficiency, an inherent source efficiency, and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer-controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting nanowire single-photon detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory, and we demonstrated a correlated-mode coupling efficiency of 97% ± 2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. It is expected that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.United States. Dept. of Defense. Assistant Secretary of Defense for Research & Engineering (Air Force Contract FA8721-05-C-0002

    Identification of candidate genes affecting Δ9-tetrahydrocannabinol biosynthesis in Cannabis sativa

    Get PDF
    RNA isolated from the glands of a Δ9-tetrahydrocannabinolic acid (THCA)-producing strain of Cannabis sativa was used to generate a cDNA library containing over 100 000 expressed sequence tags (ESTs). Sequencing of over 2000 clones from the library resulted in the identification of over 1000 unigenes. Candidate genes for almost every step in the biochemical pathways leading from primary metabolites to THCA were identified. Quantitative PCR analysis suggested that many of the pathway genes are preferentially expressed in the glands. Hexanoyl-CoA, one of the metabolites required for THCA synthesis, could be made via either de novo fatty acids synthesis or via the breakdown of existing lipids. qPCR analysis supported the de novo pathway. Many of the ESTs encode transcription factors and two putative MYB genes were identified that were preferentially expressed in glands. Given the similarity of the Cannabis MYB genes to those in other species with known functions, these Cannabis MYBs may play roles in regulating gland development and THCA synthesis. Three candidates for the polyketide synthase (PKS) gene responsible for the first committed step in the pathway to THCA were characterized in more detail. One of these was identical to a previously reported chalcone synthase (CHS) and was found to have CHS activity. All three could use malonyl-CoA and hexanoyl-CoA as substrates, including the CHS, but reaction conditions were not identified that allowed for the production of olivetolic acid (the proposed product of the PKS activity needed for THCA synthesis). One of the PKS candidates was highly and specifically expressed in glands (relative to whole leaves) and, on the basis of these expression data, it is proposed to be the most likely PKS responsible for olivetolic acid synthesis in Cannabis glands

    Charting a course for smartphones and wearables to transform population health research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the bette

    The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing.

    Get PDF
    BACKGROUND: As greater numbers of us are living longer, it is increasingly important to understand how we can age healthily. Although old age is often stereotyped as a time of declining mental abilities and inflexibility, cognitive neuroscience reveals that older adults use neural and cognitive resources flexibly, recruiting novel neural regions and cognitive processes when necessary. Our aim in this project is to understand how age-related changes to neural structure and function interact to support cognitive abilities across the lifespan. METHODS/DESIGN: We are recruiting a population-based cohort of 3000 adults aged 18 and over into Stage 1 of the project, where they complete an interview including health and lifestyle questions, a core cognitive assessment, and a self-completed questionnaire of lifetime experiences and physical activity. Of those interviewed, 700 participants aged 18-87 (100 per age decile) continue to Stage 2 where they undergo cognitive testing and provide measures of brain structure and function. Cognition is assessed across multiple domains including attention and executive control, language, memory, emotion, action control and learning. A subset of 280 adults return for in-depth neurocognitive assessment in Stage 3, using functional neuroimaging experiments across our key cognitive domains.Formal statistical models will be used to examine the changes that occur with healthy ageing, and to evaluate age-related reorganisation in terms of cognitive and neural functions invoked to compensate for overall age-related brain structural decline. Taken together the three stages provide deep phenotyping that will allow us to measure neural activity and flexibility during performance across a number of core cognitive functions. This approach offers hypothesis-driven insights into the relationship between brain and behaviour in healthy ageing that are relevant to the general population. DISCUSSION: Our study is a unique resource of neuroimaging and cognitive measures relevant to change across the adult lifespan. Because we focus on normal age-related changes, our results may contribute to changing views about the ageing process, lead to targeted interventions, and reveal how normal ageing relates to frail ageing in clinicopathological conditions such as Alzheimer's disease.The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) research was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/H008217/1).This is the final published version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s12883-014-0204-
    corecore