2,367 research outputs found

    Fine-scale variability in methanol uptake and oxidation: from the microlayer to 1000 m.

    Get PDF
    The aim of this research was to make the first depth profiles of the microbial assimilation of methanol carbon and its oxidation to carbon dioxide and use as an energy source from the microlayer to 1000 m. Some of the highest reported methanol oxidation rate constants of 0.5–0.6 d−1 were occasionally found in the microlayer and immediately underlying waters (10 cm depth), albeit these samples also showed the greatest heterogeneity compared to other depths down to 1000 m. Methanol uptake into the particulate phase was exceptionally low in microlayer samples, suggesting that any methanol utilised by microbes in this environment is for energy generation. The sea surface microlayer and 10 cm depth also showed a higher proportion of bacteria with a low DNA content, and bacterial leucine uptake rates in surface microlayer samples were either less than or the same as those in the underlying 10 cm layer. The average methanol oxidation and particulate rates were however statistically the same throughout the depths sampled, although the latter were highly variable in the near-surface 0.25–2 m compared to deeper depths. The statistically significant relationship demonstrated between uptake of methanol into particles and bacterial leucine incorporation suggests that many heterotrophic bacteria could be using methanol carbon for cellular growth. On average, methanol bacterial growth efficiency (BGEm) in the top 25 m of the water column is 6% and decreases with depth. Although, for microlayer and 10 cm-depth samples, BGEm is less than the near-surface 25–217 cm, possibly reflecting increased environmental UV stress resulting in increased maintenance costs, i.e. energy required for survival. We conclude that microbial methanol uptake rates, i.e. loss from seawater, are highly variable, particularly close to the seawater surface, which could significantly impact upon seawater concentrations and hence the air–sea flux

    Production of methanol acetaldehyde and acetone in the Atlantic Ocean

    Get PDF
    The biogeochemistry of oxygenated volatile organic compounds (OVOCs) like methanol, acetaldehyde, and acetone in marine waters is poorly understood. We report the first in situ gross production rates for methanol, acetaldehyde, and acetone of 49–103, 25–98, and 2–26 nmol L−1 d−1 over contrasting areas of marine productivity, including oligotrophic gyres and eutrophic upwellings. Photochemical production estimates are mostly negligible for methanol, up to 68% for acetaldehyde and up to 100% of gross production rates for acetone. Microbial surface OVOC oxidation to CO2 accounts for between 10–50% and 0.5–13% of the methanol and acetone losses, respectively, but largely control acetaldehyde concentrations (49–100%). Biological lifetimes in a coastal upwelling vary between ≀1 day for acetaldehyde, to approximately 7 days for methanol and up to ~80 days for acetone. In open oceanic environments, the lifetime of acetaldehyde ranges between 2 and 5 h, compared to 10–26 days for methanol and 5–55 days for acetone

    Seasonal Changes in Microbial Dissolved Organic Sulfur Transformations in Coastal Waters

    Get PDF
    The marine trace gas dimethylsulïŹde (DMS) is the single most important biogenic source of atmospheric sulfur, accounting for up to 80% of global biogenic sulfur emissions. Approximately 300milliontonsofDMSareproducedannually,butthemajorityisdegradedbymicrobesinseawater. The DMS precursor dimethylsulfoniopropionate (DMSP) and oxidation product dimethylsulphoxide (DMSO) are also important organic sulfur reservoirs. However, the marine sinks of dissolved DMSO remain unknown. We used a novel combination of stable and radiotracers to determine seasonal changes in multiple dissolved organic sulfur transformation rates to ascertain whether microbial uptake of dissolved DMSO was a signiïŹcant loss pathway. Surface concentrations of DMS ranged from 0.5 to 17.0 nM with biological consumption rates between 2.4 and 40.8 nM·d−1. DMS produced from the reduction of DMSO was not a signiïŹcant process. Surface concentrations of total DMSO ranged from 2.3 to 102 nM with biological consumption of dissolved DMSO between 2.9 and 111 nM·d−1. Comparisons between 14C2-DMSO assimilation and dissimilation rates suggest that the majority of dissolved DMSO was respired (>94%). Radiotracer microbial consumption rates suggest that dissimilation of dissolved DMSO to CO2 can be a signiïŹcant loss pathway in coastal waters, illustrating the signiïŹcance of bacteria in controlling organic sulfur seawater concentrations

    Phosphorus dynamics in the Barents Sea

    Get PDF
    The Barents Sea is considered a warming hotspot in the Arctic; elevated sea surface temperatures have been accompanied with increased inïŹ‚ow of Atlantic water onto the shelf sea. Such hydrodynamic changes and a concomitant reduction of sea ice coverage enables a prolonged phytoplankton growing season, which will inevitably affect nutrient stoichiometry and the controls on primary production. During the summer of 2018, we investigated the role of phosphorus in mediating primary production in the Barents Sea. Dissolved inorganic phosphorus (DIP), its most bioavailable form, had an average net turnover time of 9.4ïżœ4.8 d. The most southern Atlantic inïŹ‚uenced station accounted for both the highest rates of primary production (655 mg C m2 d−1) and shortest net DIP turnover (2.8ïżœ0.5 d). The fraction of assimilated DIP released as dissolved organic phosphorus (DOP) at this station was < 4% compared to an average of 21% at all other stations. We observed signiïŹcant differences between phytoplankton communities in Arctic and Atlantic waters within the Barents Sea. Slower DIP turnover and greater release of DOP was associated with Phaeocystis pouchetii dominated communities in Arctic waters. Faster turnover rates and greater phosphorus retention occurred among the Atlantic phytoplankton communities dominated by Emiliania huxleyi. TheseïŹndings provide baseline measurements of P utilization in the Barents Sea, and suggest increased Atlantic intrusion of this region could be accompanied by more rapid DIP turnover, possibly leading to future P limitation (rather than N limitation) on primary productio

    The environmental security debate and its significance for climate change

    Get PDF
    Policymakers, military strategists and academics all increasingly hail climate change as a security issue. This article revisits the (comparatively) long-standing “environmental security debate” and asks what lessons that earlier debate holds for the push towards making climate change a security issue. Two important claims are made. First, the emerging climate security debate is in many ways a re-run of the earlier dispute. It features many of the same proponents and many of the same disagreements. These disagreements concern, amongst other things, the nature of the threat, the referent object of security and the appropriate policy responses. Second, given its many different interpretations, from an environmentalist perspective, securitisation of the climate is not necessarily a positive development

    The sedimentology of river confluences

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record.Channel confluences are key nodes within large river networks, and yet surprisingly little is known about their spatial and temporal evolution. Moreover, because confluences are associated with vertical scour that typically extends to several times the mean channel depth, the deposits associated with such scours should have a high preservation potential within the rock record. Paradoxically, such scours are rarely observed, and their preservation and sedimentological interpretation are poorly understood. The present study details results from a physically‐based morphodynamic model that is applied to simulate the evolution and alluvial architecture of large river junctions. Boundary conditions within the model were defined to approximate the junction of the Ganges and Jamuna rivers, Bangladesh, with the model output being supplemented by geophysical datasets collected at this junction. The numerical simulations reveal several distinct styles of sedimentary fill that are related to the morphodynamic behaviour of bars, confluence scour downstream of braid bars, bend scour and major junction scour. Comparison with existing, largely qualitative, conceptual models reveals that none of these can be applied simply, although elements of each are evident in the deposits generated by the numerical simulation and observed in the geophysical data. The characteristics of the simulated scour deposits are found to vary according to the degree of reworking caused by channel migration, a factor not considered adequately in current conceptual models of confluence sedimentology. The alluvial architecture of major junction scours is thus characterized by the prevalence of erosion surfaces in conjunction with the thickest depositional sets. Confluence scour downstream of braid bar and bend scour sites may preserve some large individual sets, but these locations are typically characterized by lower average set thickness compared to major junction scour and by a lack of large‐scale erosional surfaces. Areas of deposition not related to any of the specific scour types highlighted above record the thinnest depositional sets. This variety in the alluvial architecture of scours may go some way towards explaining the paradox of ancient junction scours, that while abundant large scours are likely in the rock record, they have been reported rarely. The present results outline the likely range of confluence sedimentology and will serve as a new tool for recognizing and interpreting these deposits in the ancient fluvial record.This work was funded by a UK Natural Environment Research Council award to Sambrook Smith (NE/I023228/1), Bull (NE/I023864/1) and Nicholas (NE/I023120/1)

    Annual study of oxygenated volatile organic compounds in UK shelf waters

    Get PDF
    We performed an annual study of oxygenated volatile organic compound (OVOC) seawater concentrations at a site off Plymouth, UK in the Western English Channel over the period of February 2011–March 2012. Acetone concentrations ranged from 2–10 nM (nanomole/L) in surface waters with a maximum observed in summer. Concentrations correlated positively with net shortwave radiation and UV light, suggestive of photochemically linked acetone production. We observed a clear decline in acetone concentrations below the mixed layer. Acetaldehyde varied between 4–37 nM in surface waters with higher values observed in autumn and winter. Surface concentrations of methanol ranged from 16–78 nM, but no clear annual cycle was observed. Methanol concentrations exhibited considerable inter-annual variability. We estimate consistent deposition to the sea surface for acetone and methanol but that the direction of the acetaldehyde flux varies during the year

    ‘Question Moments’: A Rolling Programme of Question Opportunities in Classroom Science

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This naturalistic study integrates specific 'question moments' into lesson plans to increase pupils' classroom interactions. A range of teaching tools has explored students' ideas through opportunities to ask and write questions. Their oral and written outcomes provide data on individual and group misunderstandings. Changes to the schedule of lessons were introduced to discuss these questions and solve disparities. Flexible lesson planning over fourteen lessons across a four-week period of highschool chemistry accommodated students' contributions and increased student participation, promoted inquiring and individualised teaching, with each teaching strategy feeding forward into the next

    Discovery of lead compounds targeting the bacterial sliding clamp using a fragment-based approach

    Get PDF
    The bacterial sliding clamp (SC), also known as the DNA polymerase III ÎČ subunit, is an emerging antibacterial target that plays a central role in DNA replication, serving as a protein-protein interaction hub with a common binding pocket to recognize linear motifs in the partner proteins. Here, fragment-based screening using X-ray crystallography produced four hits bound in the linear-motif-binding pocket of the Escherichia coli SC. Compounds structurally related to the hits were identified that inhibited the E. coli SC and SC-mediated DNA replication in vitro. A tetrahydrocarbazole derivative emerged as a promising lead whose methyl and ethyl ester prodrug forms showed minimum inhibitory concentrations in the range of 21-43 ÎŒg/mL against representative Gram-negative and Gram-positive bacteria species. The work demonstrates the utility of a fragment-based approach for identifying bacterial sliding clamp inhibitors as lead compounds with broad-spectrum antibacterial activity. © 2014 American Chemical Society
    • 

    corecore