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Abstract: The marine trace gas dimethylsulfide (DMS) is the single most important biogenic source
of atmospheric sulfur, accounting for up to 80% of global biogenic sulfur emissions. Approximately
300 million tons of DMS are produced annually, but the majority is degraded by microbes in seawater.
The DMS precursor dimethylsulfoniopropionate (DMSP) and oxidation product dimethylsulphoxide
(DMSO) are also important organic sulfur reservoirs. However, the marine sinks of dissolved
DMSO remain unknown. We used a novel combination of stable and radiotracers to determine
seasonal changes in multiple dissolved organic sulfur transformation rates to ascertain whether
microbial uptake of dissolved DMSO was a significant loss pathway. Surface concentrations of DMS
ranged from 0.5 to 17.0 nM with biological consumption rates between 2.4 and 40.8 nM·d−1. DMS
produced from the reduction of DMSO was not a significant process. Surface concentrations of total
DMSO ranged from 2.3 to 102 nM with biological consumption of dissolved DMSO between 2.9 and
111 nM·d−1. Comparisons between 14C2-DMSO assimilation and dissimilation rates suggest that the
majority of dissolved DMSO was respired (>94%). Radiotracer microbial consumption rates suggest
that dissimilation of dissolved DMSO to CO2 can be a significant loss pathway in coastal waters,
illustrating the significance of bacteria in controlling organic sulfur seawater concentrations.

Keywords: dimethylsulfide; dimethylsulfoxide; bacteria; dissimilation to CO2; radiotracers; stable
tracers; coastal variability

1. Introduction

The marine trace gas dimethylsulfide (DMS) is the single most important biogenic source of
atmospheric sulfur [1]. It accounts for up to 80% of global biogenic sulfur emissions, and plays a key
role in transporting sulfur to the terrestrial environment [2,3]. Approximately 300 million tons of
DMS are produced annually in the marine environment [4]. However, only around 16% is transferred
into the atmosphere [5], because the majority (~84%) is degraded by microbes in seawater [5–7].
The emission of DMS provides important precursors for the formation of secondary organic aerosols,
and thus plays a vital role in atmospheric chemistry and climate processes [8,9]. In seawater, DMS
along with its precursors (particulate and dissolved dimethylsulfoniopropionate; DMSPp and DMSPd,
respectively) provides important sources of carbon and sulfur for marine micro-organisms [10–13].
Microbial oxidation of DMS to dimethylsulfoxide (DMSO) in the mixed surface layer of the ocean is
often the major sink for DMS [13,14]. However, the dominant processes affecting DMSO concentrations
in marine waters remain largely unquantified, but microbes are likely to be key players determining not
only marine DMS (and thus DMS flux to the atmosphere) and DMSPd, but also DMSOd concentrations.
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The dominant source of DMS is thought to be via the microbial (bacteria and/or phytoplankton)
enzymatic cleavage of algal-derived DMSP [15–17], although photochemically-derived production
mechanisms [18] and DMSO reduction [15,19,20] could also contribute. The majority of DMSP in
marine waters is particulate bound in intracellular pools (DMSPp), which gets released into the
dissolved phase through algal cell lysis caused by grazing, viral attack or autolysis, or exudation [21,22].
Rapid utilization and turnover of DMSPd by bacteria, and some phytoplankton containing extracellular
DMSP-lyases, typically maintains relatively low nano-molar concentrations [12].

Dimethylsulfoxide is also an important ubiquitous reservoir of organic sulfur in the ocean,
where the total pool of DMSO is often greater than that of DMS [23], and equal to or greater than
the total pool of DMSP [20,24]. Conventionally, the main sources of DMSOd are attributed to
photochemical and microbial oxidation of DMS [14,25]. The microbial DMS oxidation process is
thought to occur via a methylamine-dependent co-oxidation pathway, with bacteria like the marine
Roseobacter clade using an enzyme called trimethylamine monooxygenase [26,27]. However, direct
biosynthesis within cells (DMSOp) coupled with transformation to the dissolved phase via a number of
pathways, including permeative diffusion, cell lysis, and as a byproduct of cell activity, have also been
suggested [25,28]. The function of DMSO in cells is still under debate, but hypotheses revolve around
cryoprotection, osmotic pressure regulation, modification of intracellular electrolytes, and oxidative
stress defense [25,29]. The marine sinks of DMSOd remain essentially uncharacterised, although
biological DMSOd consumption in seawater was previously observed [30,31]. Possible DMSOd loss
pathways include bacterial consumption, reduction to DMS, oxidation to dimethylsulphone, and
export via sinking particles [32]. Several cultured phytoplankton species have been shown to reduce
DMSOd [33]. DMSO reductases are widespread in bacteria [34], and a variety of aerobic and anaerobic
bacteria have been shown to reduce DMSOd to DMS during anaerobic respiration [19,35]. Growth on
DMSO as a carbon source has also been reported for isolates of Hyphomicrobium [36], Arthrobacter [36,37],
and Methylophaga [38]. However, our understanding of the production and consumption pathways of
DMSO in the surface oceans and their controls are poorly understood [24].

Our objective was to employ a novel combination of stable and radiotracers in order to
simultaneously determine seasonal changes in multiple dissolved organic matter sulfur transformation
rates, and to ascertain whether microbial carbon DMSOd uptake and dissimilation to CO2 were
significant DMSOd loss pathways. Our results suggest that dissimilation of dissolved DMSO to CO2

can be a significant loss pathway (for DMSOd) in coastal waters.

2. Materials and Methods

Surface samples (≤10 m) were collected from the Western Channel Observatory long term
monitoring station L4, situated ~13 km south west of Plymouth (50.3 N, 04.22 W, water depth ~55 m).
Water samples were collected by the RV Plymouth Quest using 10 L Niskin bottles mounted on a
rosette sampler, which also housed a Seabird 19 + CTD. Sub-samples were decanted into acid-washed
brown glass bottles, sealed with ground glass stoppers with no headspace, and at in situ temperature
for the ~2 h transit back to the laboratory. Temperature variability during transit was +1 ◦C, which is
within the in situ diurnal variability at station L4.

Seawater temperature was determined from the Seabird CTD, which has an accuracy of
±0.001 ◦C [39]. The concentration of chlorophyll a, nutrients, bacteria, and phytoplankton community
composition were determined weekly at station L4 as part of the western English Channel Observatory
(https://www.westernchannelobservatory.org.uk/). Chlorophyll a concentrations were determined
through fluorometric analysis of acetone extracted pigments [40]. Nutrient analysis was conducted
using recognized analytical techniques for nitrate [41,42] and phosphate [43]. Numbers of bacterial
cells were determined by flow cytometry (Accuri C6 instrument) using SYBR Green I DNA-stained
cells to determine high nucleic acid (HNA) and low nucleic acid (LNA) containing cells from 1.8 mL
seawater samples fixed in paraformaldehyde (5% final concentration). Synechococcus sp. numbers
were determined by flow cytometry (Accuri C6 instrument) on unstained samples based on their light

https://www.westernchannelobservatory.org.uk/
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scattering and autofluorescence properties [44]. Phytoplankton enumeration and composition were
conducted using established microscopy [45].

2.1. Organic Sulfur Concentrations

Concentrations of DMS, DMSP, and DMSO in seawater were analysed sequentially using a purge
and cryotrapping system coupled with sulfur specific gas chromatography using a Varian 3800 gas
chromatograph with a pulsed flame photometric detector (GC-PFPD) using methodology described by
Simó et al. [46], Simó and Vila-Costa [47], and Archer et al. [48], as modified by Vila-Costa et al. [12] for
DMSO analysis. Briefly, for DMS, 5 mL samples were gently filtered through a 25 mm GF/F (glass fiber)
filter directly into a purge tower, avoiding any contact with air, and immediately analysed via GC-PFPD
(purged for 5 min at 60 mL min−1 and cryogenically trapped in a PTFE sample loop submerged in
liquid nitrogen before desorption using boiling water to GC). For dissolved DMSP (DMSPd), the
purged DMS sample was transferred to a glass vial with 10 M NaOH and hydrolysed for 6–24 h (to
convert DMSPd to DMS). Following hydrolysis, samples were analysed as above. For dissolved DMSO
(DMSOd), ~10 mg cobalt-doped NaBH4 was added to the purged DMSPd sample (which reduces
DMSOd to DMS) and purged for a further 10 min, with DMS analysis as previous.

For total DMSP (DMSPt), which includes particulate DMSP (DMSPp) and a minor fraction from
dissolved DMSP (DMSPd), 7 mL of whole seawater was pipetted into a glass vial with 1 mL 10 M
NaOH, and left for 12–24 h for hydrolysis to convert DMSP to DMS. Then, 1 mL was carefully pipetted
to a glass purge tower for extraction of DMS as above. For DMSPp, 7 mL of whole seawater was
gravity filtered through a 25 mm GF/F filter. The filter was placed in a glass vial with 7 mL MQ and
1 mL 10 M NaOH, and left for 12–24 h for hydrolysis. Then, 1 mL was pipetted to the purge tower and
analysed as previously. For particulate DMSO (DMSOp), ~10 mg cobalt-doped NaBH4 was added to
the purged DMSPp sample to reduce DMSOp to DMS, and subsequently analysed by GC as above.
The detection limit of the system was approximately 2.9 pmol S. The standard deviation of at least
duplicate experimental samples was on average 6%, 10%, 9%, 9%, and 7% of the mean for DMS, DMSPt,
DMSPp, DMSOp, and DMSOd, respectively. DMS standards for calibration were prepared from DMSP
(>98% purity; Dr Sinan Battah, University of Essex, Colchester, UK) in a 10 M NaOH solution in Milli-Q
water. Typically, 4–5-point calibration curves were carried out twice per month during the sampling
period, with an r2 for the resulting linear regression of ng sulfur versus square root of the peak area of
typically ≥0.996.

We report DMS, DMSPt, DMSPp, DMSOp, and DMSOd data. We additionally determined the
change in concentration of DMS from Tedlar bag incubation experiments (see stable isotope tracer rate
experiments below) by withdrawing ~30 mL and immediately gently filtering through a Millipore
filtration unit containing a 25 mm GF/F filter directly into a 20 mL glass receiving syringe (ensuring
no headspace, bubbles, or exposure to the atmosphere). This was immediately injected into a purge
tower, and purged with high purity nitrogen at a flow rate of ~100 mL min−1 for 15 min directly
into the proton transfer reaction mass spectrometer (m/z 66, PTR-MS, Ionicon, Innsbruck, Austria).
This results in an exponentially decaying peak, allowing the total amount of DMS in a sample to be
calculated by integration of the total peak area. Baseline levels were attained after 15 min of purging.
Calibration curves were prepared using pure DMS (Merck, Gillingham, Dorset, UK). A primary DMS
standard was prepared gravimetrically followed by dilution to produce a secondary standard, using
gas tight vials. Five working (tertiary) standards were made up by dilution of the secondary standard
in ultra-pure water in 100 mL glass syringes, to produce a 5-point calibration. For analysis, sub-samples
of each standard were taken using 20 mL glass syringes without exposing the sample to the air, and
purged and analyzed as above. Calibrations were performed on each sampling date. DMSPd and
DMSOd were sequentially reduced to DMS after adding NaOH (DMSPd) and cobalt-doped NaBH4

(DMSOd) [12,47] into the purge tower and direct analysis by PTR-MS as above for the GC method.
On 11 dates, DMS concentrations analysed via GC-PFPD and PTR-MS were compared and show good
agreement: y (DMS PTR-MS) = 0.957 x (DMS GC-PFPD), where r = 0.962 (n = 11, p < 0.001), suggesting
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that DMS concentrations derived from PTR-MS analysis were on average 4% lower than those from
GC measurements.

2.2. Stable Isotope Tracer Rate Experiments

Isotope tracer incubation experiments were also conducted using surface waters collected from
station L4 between May and October 2014. On each date, approximately 350 mL seawater was
siphoned directly into four acid washed and rinsed Tedlar (1L, Supelco, from Merck, Gillingham,
Dorset, UK)bags without exposure to ambient air. We simultaneously added DMS (d3-DMS, 99 atom % d,
Merck, Gillingham, Dorset, UK), DMSPd (d6-DMSP 99 atom %„ Australian Government, National
Measurement Institute, Sydney, Australia) and DMSOd (13C2-DMSO 99 atom % 13C, Merck, Gillingham,
Dorset, UK) at ~10% of in situ concentrations into triplicate experimental bags. These and a control
experimental bag (without any stable tracer additions) were incubated for 3–4 h in the dark at in situ
temperature. During experiments, sub-samples were collected over 3–4 time points from each bag
using a 50 mL glass syringe via the inlet on the Tedlar bag. Approximately 30 mL was withdrawn
(ensuring no headspace or bubbles) at each time point and immediately gently filtered through a
Millipore filtration unit containing a 25 mm GF/F filter directly into a 20 mL glass receiving syringe.
This was immediately injected into a purge tower and analysed by PTR-MS as above. This technique
allows the simultaneous quantification of DMS derived from DMSP cleavage and DMSO reduction,
gross DMS loss (we assume this equates to biological consumption because photochemical reactions
and sea to air flux were eliminated in our closed dark experimental bags), and net change in DMS
concentrations (gross production–biological consumption). DMS production from DMS cleavage
was determined as the rate of accumulation of d6-DMS from d6-DMSP, while DMS production from
DMSO reduction was measured as the rate of accumulation of 13C2-DMS from 13C2-DMSO. Biological
consumption of DMS was calculated from the rate of decrease in d3-DMS. Net change in DMS results
from the rate of change of DMS, and thus gross DMS production, is calculated as net change in DMS
plus biological consumption.

On two of the sampling dates (21 July and 26 August 2014), additional samples were also taken
during the time course incubations for the determination of DMSOd derived from the microbial
oxidation of DMS (rate of appearance of d3-DMSO from d3-DMS), the biological consumption of
DMSOd (from loss of 13C2-DMSO corrected for any conversion to 13C2-DMS), and the biological
consumption of DMSPd (from loss of d6-DMSPd corrected for any conversion to d6-DMS and d6-DMSPd).
For subsequent isotope DMSPd and DMSOd analysis at each time point, 20 mL was withdrawn from
the Tedlar incubation bags using a glass syringe and placed immediately into a 20 mL serum vial
containing two pellets of sodium hydroxide, which were immediately crimp sealed. These samples
were stored in the dark at in situ temperature for between 4 and 8 weeks [49–51]. Before analysis by
PTR-MS, 10 mL sub-samples were taken with a glass syringe and filtered as previously described.
The filtered sub-sample was immediately injected in a purge tower. Stable isotopes of DMSPd and
DMSOd were sequentially reduced to DMS after adding NaOH (DMSPd) and cobalt-doped NaBH4

(DMSOd) into the purge tower and direct analysis by PTR-MS as previously. Concentrations of stable
isotopes were determined via PTR-MS at m/z of 63, 65, 66, and 69 for unlabeled DMS, 13C2-DMS,
d3-DMS, and d6-DMS, respectively (as this method of soft ionization within the PTR-MS adds a proton
to each compound with no fragmentation of compounds). Final concentrations were calculated using
standard curves. To scale the rate of tracer consumption or production to in situ values, the calculated
rates were divided by the concentration of added tracer (yielding the apparent rate constant, h−1) and
multiplied by the concentration of natural DMS, DMSPd, or DMSOd as appropriate [15]. Biological
turnover times for DMS, DMSPd, and DMSOd were calculated from the inverse of the rate constants
for the loss of d3-DMS, d6-DMSPd, and 13C2-DMSOd, respectively.
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2.3. Radiotracer Rate Experiments

Seawater samples from the coastal station L4 were collected from Niskin bottles via acid washed
Teflon tubing directly into the gas tight dark glass bottles (305 mL volume, acid washed, and rinsed
with hot water). Labelled 14C2-DMSO was added to each bottle and incubated in the dark at in
situ temperature (no headspace). Tracer nano-molar (≤1.6 nM, representing ≤4% in situ DMSOd

concentrations) additions of 14C2-DMSOd (14CH3SO14CH3) were added to samples to determine
microbial assimilation into biomass and dissimilation to 14CO2. Labelled 14C2-DMSO was purchased
from American Radiolabeled Chemicals, Inc (St.Louis, Missouri, USA) with a specific activity of 30 mCi
mmol−1 and a radiochemical purity of >99% (based on high performance liquid chromatography). A
primary stock was made by diluting 52 µCi into 25 mL of 18 MΩ milli-Q water (2.1 µCi mL−1), and
was stored in gas tight amber vials in the dark at 4 ◦C. Storage trials suggest <6% loss in activity over
12 months. Addition volumes of 14C2-DMSO to seawater samples were <1% of the sample volume
incubation experiments.

2.3.1. Carbon Assimilation from DMSOd

For DMSOd carbon assimilation, a volume of 100 mL of the seawater sample was withdrawn
from the bottom of the gas tight sampling bottles with a Teflon tube attached to a gas tight glass
syringe. The tube was detached and the glass syringe attached to a Swinnex filter holder containing a
47 mm Supor 0.2 µm filter [47]. Supor filters (0.2 µm) were used because of their superior retention
of particulate material [52]. Procedural blanks were routinely assessed by incubating 0.2 µm filtered
seawater (with added Mercuric Chloride, 0.01% final concentration) and filtration, resulting in average
counts of <60 ± 3 DPM per filter (n = 10, for ~34,000 DPM added per incubation). Samples and
procedural blanks were filtered in a downward position with application of a very gentle pressure (as
in Simó & Vila-Costa [47]). It took about 6–8 min to filter each sample. Filters were rinsed (using a
three-way luer lock and pre-loaded 2 mL syringe) with approximately 2 mL of 0.2 µm filtered seawater
(but were not allowed to dry out). Filters were placed into scintillation vials, covered with 4 mL liquid
scintillation fluid (Optiphase HiSafe 3; Perkin-Elmer, High Wycombe, UK), and counted on a Tri-carb
3100 (Perkin Elmer, High Wycombe, UK) liquid scintillation counter. Typically, for seawater samples,
the coefficient of variation based on 3–6 replicates is <3%. It is possible that filtration artefacts caused
release of DMSOd from particulate material (cf. DMSP, Kiene & Slezak [53]), so DMSO assimilation
rates should be considered as minimal estimates. Exposure of filters to air at the end of filtration was
avoided in our approach, which has previously been reported to cause severe DMSPd release [53].

2.3.2. Carbon Dissimilation to CO2 from DMSOd

DMSOd carbon microbial oxidation to 14CO2 (dissimilation) was determined in triplicate by
pipetting 1 mL samples (each from replicate 305 mL gas tight incubation bottles) into 2 mL micro
centrifuge tubes (o ring sealed), and adding 0.5 mL of SrCl2.6H2O (1 M to precipitate the 14CO2 as
Sr14CO3), 20 µL of NaOH (1 M, to neutralise the HCl produced), and 100 µL of Na2CO3 (1 M, to ensure
adequate pellet formation) (as in Goodwin et al. [54] for 14C labelled methyl halides). The efficiency of
the process assessed by mass balance of added 14C label was 96% ± 3% (n = 6). After centrifugation,
the supernatant was aspirated and the pellet washed twice with ethanol (80%), resuspended in 1 mL of
NaOH solution (~10 nM) that had been adjusted to a pH of 11.7, before addition of Optiphase HiSafe III
scintillant to create a slurry. The samples were vortex mixed and stored in the dark for >24 h before being
analysed on the scintillation counter. This period ensures that any chemiluminescence arising from
interactions between the added NaOH and the Optiphase scintillant subsides [52]. Procedural blanks
were routinely assessed as previously described, and resulted in average counts of <22 ± 7 DPM mL−1

(n = 10, for ~34 000 DPM added per incubation).
Microbial assimilation and dissimilation rates of DMSOd were determined from linear time course

experiments (refer to Figure S1), where the apparent rate constants k (h−1) was initially calculated
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from a ratio of the 14C counts collected on either the filter (assimilation) or as precipitated 14CO2

(dissimilation, DPM mL−1
·h−1) divided by the 14C2-DMSO spike (DPM mL−1). The apparent rate

constant was multiplied by the in situ concentration of DMSOd to calculate DMSOd assimilation or
dissimilation rates (nM d−1). All rate constants were corrected by subtracting killed sample counts.
In addition, dissimilation rates were corrected to account for a minor (typically <1%) contribution from
assimilation into particles entrained within the Sr14CO3 precipitate.

3. Results

3.1. Environmental and Biological Variables at Station L4

Station L4 is situated in northern temperate waters (salinity ~ 35.0 PSU [39]) and, typically, surface
water temperature does not increase above 10 ◦C until mid-April (Figure 1a). This is coincident with
decreasing nutrient concentrations (Figure 1b), increasing concentrations of chlorophyll a (Figure 1c),
and the start of water column stratification [39]. Average winter (Jan–Mar) nitrate and phosphate
concentrations were 8.6 ± 0.6 and 0.6 ± 0.1 µM, respectively. Concentrations of nitrate and phosphate
rapidly declined to <0.1 µM by the beginning of June and generally remain limited until early October,
when the water column becomes fully mixed and nutrients begin to increase to typical winter values
coincident with the decreasing sea surface temperature (Figure 1). The concentration of chlorophyll a
showed a maxima mid-April of 2.4 µg L−1 (Figure 1c), which is average compared with the long term
trends (1992–2008 Smyth et al. [39]). This peak was associated with a typical spring diatom bloom
(3.04 × 103 cells mL−1), mainly comprising of Pseudo-nitzschia (0.8 × 103 cells mL−1) and large (≥4 µm)
Thalassiosira phytoplankton cells (2.2 × 103 cells mL−1 Figure 2a). This was followed in May by a
slightly smaller chlorophyll a peak (1.8–2.0 µg L−1, Figure 1c), but longer lasting phytoplankton bloom
consisting mainly (23–55% of total phytoplankton) of Phaeocystis (1.5–4.4 × 103 cells mL−1 Figure 2a).
Thereafter, chlorophyll a concentrations generally showed a decreasing pattern for the rest of 2014
(Figure 1c). From mid-July to mid-September, the phytoplankton was dominated by phytoflagellates
(~2–5 µm) and did not show the more typical late August/September dinoflagellate bloom [39].
There was a relatively small bloom of Emiliania huxleyi during late August (up to 1.1 × 103 cells mL−1

Figure 2a). The two relatively small peaks in dinoflagellate abundance that occurred during June and
July (Figure 2b) were dominated by Heterocapsa sp. (118 cells mL−1, 90% of total Dinoflagellate species)
and Neoceratium lineatum (118 cells mL−1, 97% of total dinoflagellate species), respectively. From flow
cytometry analysis, the numbers of nanophytoplankton (2–20 µm), picophytoplankton (<2.0 µm),
and Synechococcus ranged between 0.12 and 15.9, 1.46 and 41.5, and 0.15 and 62.0 × 103 cells mL−1,
respectively, and showed peaks in abundance during September (Figure 2c). Total bacteria ranged
between 2.87 and 22.3 × 105 cells mL−1 and were generally dominated by the high nucleic acid fraction.
Bacterial numbers were generally highest during June–September months (Figure 2d).

3.2. DMS, DMSP, and DMSO Concentrations

Near surface concentrations of DMS ranged from 0.5 nM during October to a maximum of
17.0 nM in mid-June (Figure 3a). While DMS concentrations close to the bottom at 50 m showed less
pronounced variability, ranging between 0.4 and 5.0 nM. Total DMSP near surface concentrations
did not show any distinct maxima like DMS, but were on average 68.1 ± 18.5 nM during spring and
summer months before generally decreasing to 10.6 ± 0.4 nM in October (Figure 3b). In close to
bottom waters, DMSPt concentrations averaged 13.5 ± 8.9 nM (June–October). However, there were
noticeably higher concentrations during May (average 108.0 ± 36.0 nM, Figure 3b), which could have
been because of decaying and/or settling Phaeocystis cells, which were relatively abundant during
this month (Figure 2a). The DMS/DMSPt ratio (Figure 3a) clearly followed the same pattern as the
DMS, suggesting that elevated DMS concentrations were not just a product of higher concentrations of
DMSPt. For near surface waters, 66–100% of the DMSPt was particulate (57–100% for near bottom
samples). The total DMSO concentration in surface waters ranged between 2.3 and 102 nM, with on
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average ~56% in the dissolved phase (Figure 3c). The maxima in DMSOt occurred during June,
coincident with a relatively high concentration of DMS at 11.4 nM. Minima in DMSOt concentrations
were observed during autumn months, and were on average 7.0 ± 1.0 nM.Microorganisms 2020, 8, 337 7 of 20 

 

 

 

 
 

Figure 1. Change in (a) sea surface temperature, (b) inorganic nutrient concentrations of nitrate and 
phosphate, and (c) chlorophyll a in surface waters of station L4 in the western English Channel 
during 2014.
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Figure 1. Change in (a) sea surface temperature, (b) inorganic nutrient concentrations of nitrate
and phosphate, and (c) chlorophyll a in surface waters of station L4 in the western English Channel
during 2014.
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Figure 2. Abundance of (a) individual phytoplankton species; (b) total phytoplankton and dinoflagellate cells; (c) Synechococcus, pico, and nanophytoplankton; and (d) total 
bacterioplankton in surface waters of station L4 in the western English Channel during 2014. HNA, high nucleic acid; LNA, low nucleic acid.

Figure 2. Abundance of (a) individual phytoplankton species; (b) total phytoplankton and dinoflagellate cells; (c) Synechococcus, pico, and nanophytoplankton; and (d)
total bacterioplankton in surface waters of station L4 in the western English Channel during 2014. HNA, high nucleic acid; LNA, low nucleic acid.
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Figure 3. Changes in concentrations of (a) dimethylsulfide (DMS) and average molar ratio of 
DMS/total dimethylsulfoniopropionate (DMSPt), (b) DMSPt, and (c) dimethylsulphoxide (DMSO) 
measured in the water column at station L4. 
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Figure 3. Changes in concentrations of (a) dimethylsulfide (DMS) and average molar ratio of DMS/total
dimethylsulfoniopropionate (DMSPt), (b) DMSPt, and (c) dimethylsulphoxide (DMSO) measured in
the water column at station L4.
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3.3. Stable-Isotope Tracer Experiments

Biological consumption of DMS (DMS BC) ranged between 2.4 and 40.8 nM d−1 (Figure 4a).
The average DMS BC was 5.5 ± 2.3 nM d−1 (n = 8), excluding the three maxima that occurred during
June and September. Net DMS production (change in 12C-DMS with time) ranged between 0.0 and
10.5 nM d−1 (average 3.7 ± 3.4 nM d−1 n = 12). Summing net DMS production and DMS BC yields
gross DMS production rates of 2.7–42.9 nM d−1 (average 14.4 ± 11.2 nM d−1, n = 11 Figure 4a). We only
detected DMS production from DMSP cleavage on half of the sampling dates ranging between 0.2 and
21.5 nM d−1 (Figure 4b). DMS produced from the reduction of DMSO was only detected at the
beginning of September (1.2 ± 0.0 nM d−1, Figure 4b), and was thus not a significant process during
May–September 2014.

We determined changes in concentrations of d6-DMSPd and 13C2-DMSOd on two dates in July
and August (organic S transformations are summarized in Figure 5). There was a net loss of DMSPd

(loss of 12C-DMSPd) of 20.7 ± 8.8 and 29.2 ± 13.5 nM d−1 on 21 July and 26 August, respectively. We
calculated biological consumption of DMSP as 75.7 ± 14.3 and 48.4 ± 15.6 nM d−1 for July and August,
respectively (Figure 5). During these two experiments, we did not detect any DMSPd cleavage or any
direct oxidation of DMSPd to DMSOd, and thus we calculated gross DMSPd production (biological
DMSPd consumption – net loss of DMSPd) of at least 55.0 and 19.2 nM d−1 for July and August,
respectively (Figure 5). Biological consumption of DMSOd was 23.2 ± 5.9 and 25.6 ± 11.6 nM d−1 for
July and August, respectively (Figure 5). We observed a net loss of DMSOd (loss of 12C-DMSOd) of
8.1 ± 3.3 and 18.9 ± 11.3 nM d−1, and thus calculated that gross DMSOd production must be at least
15.1 ± 6.4 and 6.7 ± 16.2 nM d−1 for July and August, respectively (Figure 5).

3.4. Radiotracer Experiments

When nano-molar concentrations of 14C2-DMSOd were added to seawater samples, 14C-carbon
was incorporated into cellular biomass and respired to 14CO2 linearly for ~3.5 h (for examples, see
Figure S1). Thus, marine microbes assimilated and dissimilated DMSOd carbon, using it for growth and
energy. Microbial uptake of DMSOd into biomass (assimilation) ranged between <0.01 and 0.49 nM d−1

during June–December July 2014, and was at a maximum during summer months (Figure 4c). Microbial
conversion of carbon from DMSOd to CO2 (dissimilation) was significantly higher and ranged between
2.7 and 111.0 nM d−1, with maximum rates during June (Figure 3c). The combination of DMSO
assimilation and dissimilation thus ranged between 2.9 and 111.0 nM d−1, with between <0.1% and
5.3% of DMSOd being used for microbial growth, although this may represent a lower limit if filtration
artefacts led to significant cell lysis and subsequent loss of assimilated DMSO.
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Figure 4. Changes in rates of (a) production and consumption of DMS and turn over time, (b) DMS 
produced from the cleavage of DMSP, and (c) microbial utilization of DMSO in surface waters at 
station L4. Error bars represent ±1 standard deviation based on three replicates. 
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Figure 4. Changes in rates of (a) production and consumption of DMS and turn over time, (b) DMS
produced from the cleavage of DMSP, and (c) microbial utilization of DMSO in surface waters at station
L4. Error bars represent ±1 standard deviation based on three replicates.
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grey text. Transformations labelled 1–9 are all microbial processes: (1) oxidation of DMS to DMSOd 
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Figure 5. Box model summarising organic sulfur transformation rates (nM d−1) under (a) mid-high
concentrations of DMS (14.0 nM, sampled on 21 July 2014) and (b) low concentrations of DMS (1.0 nM
sampled on 26 August 2014). These were the only two dates when all organic sulfur transformation
rates were simultaneously determined. NP refers to net production and GP to gross production.
Added stable tracers (in grey boxes) and their transformation products are indicated in grey text.
Transformations labelled 1–9 are all microbial processes: (1) oxidation of DMS to DMSOd (appearance
of d3-DMSO), (2) consumption of DMS (corrected loss of d3-DMS), (3) reduction of DMSOd to DMS
(appearance of 13C2 DMS), (4) enzymatic cleavage of DMSPd to DMS (appearance of d6-DMS), (5)
conversion of DMSPd to DMSOd (appearance of d6-DMSO), (6) consumption of DMSPd (corrected loss
of d6-DMSP), (7) consumption of DMSOd (corrected loss of 13C2-DMSOd), (8) DMSOd assimilation
for growth (incorporation of 14C-DMSOd into the particulate phase), and (9) DMSOd dissimilation to
CO2 (14CO2 precipitated as 14CO3). An “X” denotes no detectable rate was determined during the
incubation experiment. Rates are shown as ±1 standard deviation based on three replicates.

4. Discussion

The average surface DMS concentration found at L4 between May and October 2014 was
5.1 ± 4.0 nM, which compares well with the average found in U.K. shelf waters over the same
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monthly span of 5.4 ± 8.6 nM (data retrieved from the Global Surface Seawater DMS database:
http://saga.pmel.noaa.gov/dms, number of records 2637). The ranges of DMS, DMSPt, and DMS/DMSPt

presented here also agree with those found in a previously published seasonal cycle at L4 [55]. Variations
in DMS and DMSP are partly a consequence of taxonomic succession, particularly of dinoflagellate
species [55,56]. Our maximum DMS was ~6 nM lower than Archer et al. [55], possibly reflecting the
absence of Karenia mikimotoi (cf. ~100 cells mL−1 in Archer et al. [55]) and lower numbers of Scrippsiella
trochoidea (8.2 compared with 25 cells mL−1 in Archer et al. [55]). Surface DMS concentrations showed
a statistically significant positive correlation with the total abundance of dinoflagellate cells (r = 0.529,
n = 19 p = 0.02), perhaps reflecting the ability of several species, for example, Scrippsiella trochoidea and
Heterocapsa triquetra, to directly produce DMS by cleaving dissolved DMSP [57–60]. Interestingly, there
was a bloom of Heterocapsa sp. on 23 June 2014 (118 cells mL−1), which may have also contributed to
the DMS maxima observed at this time. The range in DMSPt concentrations found at the coastal L4
station is within the range often reported for a variety of other marine environments, including the
North Sea, North Atlantic, Mediterranean, and subarctic Pacific [20,30], but did not reach the elevated
concentrations associated with intense dinoflagellate or Phaeocystis sp. blooms (>200 nM) [30,61,62].
The majority of the DMSP was in the particulate phase, as usually reported [24,30,56,62]. The average
DMSPp/DMSOp for our study was 5.4 ± 4.8, in agreement with the average reported in Simó &
Vila-Costa [47]. In comparison with DMS and DMSP, concentrations of DMSO are relatively less
well documented [32]. During the majority of our sampling dates, surface DMSOt concentrations
remained lower than DMSPt concentrations, with maximum values not exceeding ~50 nM, as was
similarly reported for coastal Antarctic waters [20]. Our DMSOt values are within ranges reported
globally [24,30,32,47]. One notable exception was a large peak of DMSOt (DMSOd 62 nM, DMSOp

46 nM), which corresponded to an over 140-fold increase in the number of dinoflagellate cells from
a pre-bloom average of 0.91 to 131 cell mL−1. During this time, the dinoflagellate abundance was
dominated (90%) by Heterocapsa cells, which were previously absent. We thus hypothesise that either
there is direct production of DMSOd from the high-DMSP producing Heterocapsa [58], or the bacterial
community associated with these dinoflagellates oxidises DMS to DMSOd (as Sagittula stellata have been
shown to do using DMS as an energy source [63]) or metabolises DMSP straight to DMSO. Dominant
pelagic bacteria such as the marine Roseobacter clade are thought to use methylamine-dependent
monoxygenases to oxidise DMS to DMSO [27]. This trimethylamine monoxygenase is also present in
the SAR11 clade, which, together with the Roseobacter group, could account for 20% of bacterial cells in
surface seawater [27]. The SAR11 subgroups Ia and Ib have also been suggested to be the main potential
DMSP consumers [64], although Roseobacter sp. also metabolise DMSP [65]. Growth experiments
with a Roseobacter isolate also revealed its potential plasticity in metabolism, by demonstrating a
shift from DMS oxidation and DMSP degradation under aerobic conditions to DMSO (and nitrate)
reduction under anaerobic conditions [66]. Alternatively, Thume et al. [67] have recently reported
that a new sulfur metabolite dimethylsulfoxonium propionate (DMSOP) is synthesized by several
DMSP-producing phytoplankton and marine bacteria, which is further metabolized (by marine bacteria)
to DMSO. On average, DMSOd accounted for 55% of DMSOt and showed no obvious trends over the
sampling period. The concentration of DMSOt in surface waters also showed a significant relationship
with dinoflagellate abundance (r = 0.498, n = 19, p < 0.05).

The biological consumption rates of DMS determined during this temperate coastal study were
generally in the same range as those reported for coastal Antarctic [20] and subarctic Pacific waters [65].
In these polar waters, Asher et al. [20,68] suggest that their measured gross DMS loss/consumption
rates should largely reflect biological consumption owing to low calculated DMS photo-oxidation rates.
Biological DMS consumption rates were reportedly lower in the Ross Sea, Antarctica (0.02–8.8 nM d−1),
possibly because of lower temperatures minimizing bacterial activity [13]. Biological processes are
generally reported to dominate DMS removal compared with sea-air flux, photo-oxidation, and mixing
at the base of the mixed layer [20,68,69]. Our biological consumption rates of DMS also showed a
statistically significant positive linear correlation with both the numbers of the dinoflagellate Scrippsiella

http://saga.pmel.noaa.gov/dms
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trochoidea (n = 11, r = 0.9858 p < 0.001) and the diatoms Pseudo-nitzschia pungens (n = 11, r = 0.9908,
p < 0.001) and Leptocylindrus danicus (n = 11, r = 0.8543, p < 0.001), where the numbers of phytoplankton
cells varied between <0.04 and 7.68, <0.16 and 2.6, and <0.10 and 196.0 cells mL−1, respectively.
The most noticeable was the peak in DMS BC during June, which coincided with an increase in the
numbers of Scrippsiella trochoidea (from average background of 0.16 to 7.92 cells mL−1), which accounted
for ~72% of all the dinoflagellates. Despite generally occurring in relatively low numbers (cf. ~25 cells
mL−1 at L4 reported in Archer et al. [55]), Scrippsiella trochoidea is a prolific DMSP producer, with cellular
concentrations reported as high as millimolar [70] or 174–380 pg DMSPt cell−1 [58,71]. The bacterial
species associated with Scrippsiella trochoidea in culture have been shown to consume DMS, mostly
oxidising it to DMSO [72]. We cannot confirm DMS oxidation to DMSO during these June experiments
as we did not undertake complimentary stable tracer DMSO analysis on these dates. The biological
turnover time for DMS at station L4 ranged between 0.2 and 1.8 days, in agreement with previous
marine estimates [30,68], and showed the quickest turnover coincident with maximum rates of DMS
BC. DMS produced from DMSP cleavage was highly variable at our coastal station, ranging from
non-detectable to 21.5 nM d−1 (average 9.1 ± 9.3 nM d−1, n = 6). Generally, these rates are in the range
previously reported for a variety of marine environments [15,20,30,68]. Our rates of DMSPd cleavage
correlated with the abundance of the grazing ciliate Tontonia ovalis (n = 6, r = 0.9790, p < 0.001) and large
flagellates (≥15 µm, where n = 6, r = 0.8346, p < 0.05), possibly suggesting enhanced DMSP lyase activity
owing to grazing pressures, perhaps as some chemical “don’t eat me” cue [73], or because of physical
disruption of cells during grazing [74]. DMS produced from DMSO reduction was not detectable at the
coastal station L4, in sharp contrast to Antarctic environments [15,20]. Following a simple DMS mass
balance approach, which assumes that the observed net change in the DMS pool must equal the DMS
produced by DMSP cleavage and DMSO reduction minus biological DMS consumption [15], allows
an assessment of the significance of other DMS sources. Our data suggest that up to 42.9 nM d−1 of
DMS could be excreted from biological particles (and/or the conversion of unlabeled DMSP or DMSO
that has leaked from cells into the dissolved pool [15]). However, a correlation between estimated
DMS release from particles and biological consumption (n = 11, r = 0.7903, p < 0.001) suggests a tight
coupling in coastal waters.

The biological loss of DMSOd due to assimilation and dissimilation (determined using radiotracers)
ranged between 2.9 and 111 nM d−1. However, the maximum loss rate was driven by the relatively
high DMSOd concentration of 62 nM compared with the otherwise seasonal average of 9.2 ± 6.4 nM.
Excluding the observed maxima, radiotracer-derived DMSOd biological consumption ranged between
2.9 and 24.3 nM d−1. Independent stable tracer experiments using 13C2-DMSO during July–August
also suggest gross biological DMSO consumption rates of 23.3 ± 5.9 and 25.6 ± 11.6 nM d−1 (Figure 4c).
A comparison between stable tracer-derived microbial DMSOd biological consumption rates and
radiotracer-derived DMSOd assimilation plus dissimilation loss rates during July suggests that the
majority of microbial DMSOd loss (23.2 ± 5.9 nM d−1 Figure 5a) was because of microbial dissimilation
of DMSOd to CO2 (24.2 ± 0.3 nM d−1, Figure 5a), presumably in order to provide reducing power.
However, during August, stable tracer-derived gross consumption rates of 25.6 ± 11.6 nM d−1 were
higher than the radiochemical-derived DMSOd assimilation plus dissimilation combined rate of
10.5 ± 0.3 nM d−1 (Figure 5b), suggesting that other DMSOd loss reactions were dominant, for example,
perhaps further oxidation to dimethylsulphone [32], as we did not detect any reduction to DMS. Our
experimental design precluded DMSO losses owing to photochemical reactions [75].

Excluding the maxima, the biological DMSO loss rates (assimilation plus dissimilation) in coastal
waters determined in our study averaged 11.9 ± 2.8 nM d−1, which is comparable to DMSOd loss rates
of 4–10 nM d−1 determined via changes in concentrations of DMSO during dark incubations [30,76]. By
comparison, biological DMSOd uptake rates determined at coastal stations in the Gulf of Mexico were
lower than ours, ranging between 1.7 and 3.9 nM d−1 [31], possibly because of comparatively lower
chlorophyll a levels and the influence of riverine outflows during the latter study. Turnover times of
DMSOd were estimated from the reciprocal of the total apparent rate constant (14C-derived assimilation
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plus dissimilation) at 0.6–1.9 d, which is comparable to 0.5–0.7 d derived from the 13C2-DMSO stable
tracer experiments, and not dissimilar to previous literature estimates of 2–5 d [30,76]. However,
Tyssebotyn et al. [31] report a much slower median DMSOd turnover time of 7.4 d in coastal river
plume stations, presumably because of their lower DMSOd oxidation rates. The majority of DMSOd

utilized by the heterotrophic community was respired (>94%), like a variety of other low nano-molar
organic methylated substrates in seawater such as methanol, methylamines, glycine betaine, and
trimethylamine N-oxide [77–81], although up to 30% of acetaldehyde was assimilated into biomass by
SAR11 bacterioplankton in culture [82]. The microbial oxidation of C1 units, in these cases, methyl
groups, has been previously hypothesized to be a significant conduit by which dissolved organic carbon
is recycled to CO2 in the upper ocean [81], and our DMSOd respiration data lend support to this idea.
Tyssebotyn et al. [31] similarly concluded that DMSO was mostly metabolized for energy, although they
reported a lower proportion of dissimilation (62–75%) compared with our data, and suggested that
the proportion metabolized does not change with dissolved carbon or nutrient status. Our seasonally
resolved data suggest that DMSO assimilation is highest during summer (up to 5%) when nutrients
are depleted, and lowest during nutrient replete winter months, in agreement with an annual study of
methanol metabolism at station L4 [80].

The rates of biological consumption of DMSPd (75.7 and 48.4 nM d−1 for 21 July and 26 August
respectively, Figure 5) were between 9–19 and 2–3 times higher than that of DMS and DMSOd,
respectively, under both medium (14.0 nM) and low DMS (1.0 nM) conditions (Figure 5). During these
two sampling dates, we did not detect any bacterial enzymatic conversion of DMSPd to DMS, which
perhaps indicates sustained bacterial sulfur demand and consumption of DMSPd via demethylation or
demethiolation pathways [1,83]. Although it has been demonstrated that Synechococcus cells (Figure 2c)
assimilate DMSP sulfur [84], our dark incubations would minimise their contribution to DMSP
uptake. Our biological consumption rates of DMSPd are within the range of marine DMSPd turnover
rates summarized in Kiene et al. [83], where up to 100% of DMSPd was reportedly metabolized via
demethylation. The turnover times of DMSPd were estimated at 0.3 ± 0.1 d, in agreement with other
marine waters [30]. DMS has been previously demonstrated to be metabolized by bacteria much more
slowly than DMSPd [10], with our bacterial DMS consumption data suggesting that it is utilised up
to 19 times slower than DMSPd. Stable tracer derived biological consumption rates of DMSOd are
intermediate between DMS and DMSPd. The combined biological consumption of dissolved DMSP,
DMS, and DMSO was ~77–108 nM d−1 (Figure 5). We estimate the contribution made by these dissolved
organic species to both bacterial carbon and sulfur demand by assuming that bacterial heterotrophic
production (BP) was 0.18 ± 0.04 (n = 3) and 0.08 ± 0.04 (n = 3) µg C L−1

·h−1 during July and August,
respectively (data derived from Sergeant et al. [80] using a theoretical leucine-to-carbon conversion
factor of 1.55 kg C mol leu−1 [85]). Bacterial respiration (BR) was calculated from production, where
BR = 3.69BP0.58 [86]. Bacterial growth efficiency (BGE) was calculated in two different ways; firstly
using production (BP) and respiration (BR) estimates (BGE = BP/(BP + BR)), and secondly using
chlorophyll a concentrations (Figure 1c). Bacterial carbon demand was calculated by dividing bacterial
production (BP) by the average of the two estimates of BGE as 3.35 ± 0.83 and 1.74 ± 0.79 µmoles C L−1

d−1 for July and August, respectively. The rates of biological consumption of dissolved DMSP, DMS,
and DMSO were converted to carbon units (by multiplying by 5, 2, and 2, respectively) to yield rates of
0.44 and 0.30 µmol C L−1 d−1 for July and August, respectively. This suggests that these three organic
sulfur species could support 13%–17% of the estimated bacterial carbon demand during summer
months. Bacterial carbon demand was converted to sulfur demand, assuming a carbon to sulfur ratio
of 86 [11,87], resulting in 0.04 and 0.02 µmoles S L−1

·d−1 for July and August, respectively. Calculations
suggest that DMSPd alone could supply all of the sulfur to meet microbial demand (195% and 234% for
July and August, respectively, DMSP S microbial consumption/bacterial S demand). Even if only ~50%
of DMSPd sulfur used by bacteria was incorporated into biomass, that is, used for assimilatory rather
than dissimilatory purposes, then the combined uptake of DMS, DMSPd, and DMSOd (277% and 378%
for July and August, respectively) would still meet bacterial sulfur demands. DMSPd is known to be
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a widespread substrate for heterotrophic bacteria, with literature suggesting that it can provide up
to 15% and 100% of their carbon and sulfur requirements, respectively [11,83]. Similar calculations
for DMSOd suggest that this compound alone could supply 60–126% and 1.4–2.9% of bacterial sulfur
and carbon demand, respectively. Bacterial utilization of such reduced organic sulfur species over
dissolved sulfate is thought to be energetically preferable for the synthesis of methionine [88].

In summary, these data demonstrate that, throughout the productive months of the year at a
temperate coastal location, the biological consumption of DMS is highly variable, and largely decoupled
from the amount of DMS produced from cleavage of DMSPd, and its oxidation to DMSOd. Stable tracer
experiments suggest that DMS produced from the reduction of DMSOd is not a common pathway in
temperate coastal waters, which contrasts to Antarctic regions. Microbial consumption rates of organic
sulfur species follow the order DMSPd > DMSOd > DMS, where the microbial dissimilation of DMSOd

to CO2 can be a significant loss pathway for DMSOd in coastal waters. However, what controls the
loss of DMSOd and the identification of bacteria responsible (and their biochemical pathways/genes)
in seawater largely remains elusive.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/3/337/s1,
Figure S1: Typical time course experiments at the coastal station L4 showing the amount of radioactive carbon
from the added 14C2-DMSO that was used during (a) assimilation into particulate material and (b) oxidation to
14CO2 after radiotracer addition of ≤1.6 nM. Where DPM is disintegrations per minute (1 DPM = 4.51 × 10−13 Ci).
Error bars represent ±1 standard deviation of three replicate samples.
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