16,359 research outputs found

    Negative differential resistance due to single-electron switching

    Full text link
    We present the multilevel fabrication and measurement of a Coulomb-blockade device displaying tunable negative differential resistance (NDR). Applications for devices displaying NDR include amplification, logic, and memory circuits. Our device consists of two Al/Alx_{x}Oy_{y} islands that are strongly coupled by an overlap capacitor. Our measurements agree excellently with a model based on the orthodox theory of single-electron transport.Comment: 3 pages, 3 figures; submitted to AP

    Precision frequency measurements with interferometric weak values

    Get PDF
    We demonstrate an experiment which utilizes a Sagnac interferometer to measure a change in optical frequency of 129 kHz per root Hz with only 2 mW of continuous wave, single mode input power. We describe the measurement of a weak value and show how even higher frequency sensitivities may be obtained over a bandwidth of several nanometers. This technique has many possible applications, such as precision relative frequency measurements and laser locking without the use of atomic lines.Comment: 4 pages, 3 figures, published in PR

    Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification

    Get PDF
    We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam's transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 560 femtoradians and the linear travel of a piezo actuator down to 20 femtometers

    Optimizing the Signal to Noise Ratio of a Beam Deflection Measurement with Interferometric Weak Values

    Get PDF
    The amplification obtained using weak values is quantified through a detailed investigation of the signal to noise ratio for an optical beam deflection measurement. We show that for a given deflection, input power and beam radius, the use of interferometric weak values allows one to obtain the optimum signal to noise ratio using a coherent beam. This method has the advantage of reduced technical noise and allows for the use of detectors with a low saturation intensity. We report on an experiment which improves the signal to noise ratio for a beam deflection measurement by a factor of 54 when compared to a measurement using the same beam size and a quantum limited detector

    The Dynamics of a Classical Spinning Particle in Vaidya Space-Time

    Full text link
    Based on the Mathisson-Papapetrou-Dixon (MPD) equations and the Vaidya metric, the motion of a spinning point particle orbiting a non-rotating star while undergoing radiation-induced gravitational collapse is studied in detail. A comprehensive analysis of the orbital dynamics is performed assuming distinct central mass functions which satisfy the weak energy condition, in order to determine a correspondence between the choice of mass function and the spinning particle's orbital response, as reflected in the gravitational waves emitted by the particle. The analysis presented here is likely most beneficial for the observation of rotating solar mass black holes or neutron stars in orbit around intermediate-sized Schwarzschild black holes undergoing radiation collapse. The possibility of detecting the effects of realistic mass accretion based on this approach is considered. While it seems unlikely to observe such effects based on present technology, they may perhaps become observable with the advent of future detectors.Comment: REVTeX file, 20 pages, 26 figure

    Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests

    Get PDF
    We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response

    Continuous phase amplification with a Sagnac interferometer

    Get PDF
    We describe a weak value inspired phase amplification technique in a Sagnac interferometer. We monitor the relative phase between two paths of a slightly misaligned interferometer by measuring the average position of a split-Gaussian mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the amplification both with classical wave optics and as an inverse weak value.Comment: 5 pages, 4 figures, previously submitted for publicatio

    Speckle-visibility spectroscopy: A tool to study time-varying dynamics

    Get PDF
    We describe a multispeckle dynamic light scattering technique capable of resolving the motion of scattering sites in cases that this motion changes systematically with time. The method is based on the visibility of the speckle pattern formed by the scattered light as detected by a single exposure of a digital camera. Whereas previous multispeckle methods rely on correlations between images, here the connection with scattering site dynamics is made more simply in terms of the variance of intensity among the pixels of the camera for the specified exposure duration. The essence is that the speckle pattern is more visible, i.e. the variance of detected intensity levels is greater, when the dynamics of the scattering site motion is slow compared to the exposure time of the camera. The theory for analyzing the moments of the spatial intensity distribution in terms of the electric field autocorrelation is presented. It is demonstrated for two well-understood samples, a colloidal suspension of Brownian particles and a coarsening foam, where the dynamics can be treated as stationary. However, the method is particularly appropriate for samples in which the dynamics vary with time, either slowly or rapidly, limited only by the exposure time fidelity of the camera. Potential applications range from soft-glassy materials, to granular avalanches, to flowmetry of living tissue.Comment: review - theory and experimen
    corecore