21,245 research outputs found

    DScent Final Report

    Get PDF
    DScent was a joint project between five UK universities combining research theories in the disciplines of computational inference, forensic psychology and expert decision-making in the area of counter-terrorism. This document discusses the work carried out by Leeds Metropolitan University which covers the research, design and development work of an investigator support system in the area of deception using artificial intelligence. For the purposes of data generation along with system and hypothesis testing the project team devised two closed world games, the Cutting Corners Board Game and the Location Based Game. DScentTrail presents the investigator with a β€˜scent trail’ of a suspect’s behaviour over time, allowing the investigator to present multiple challenges to a suspect from which they may prove the suspect guilty outright or receive cognitive or emotional clues of deception (Ekman 2002; Ekman & Frank 1993; Ekman & Yuille 1989; Hocking & Leathers 1980; Knapp & Comadena 1979). A scent trail is a collection of ordered, relevant behavioural information over time for a suspect. There are links into a neural network, which attempts to identify deceptive behavioural patterns of individuals. Preliminary work was carried out on a behavioural based AI module which would work separately alongside the neural network, with both identifying deception before integrating their results to update DScentTrail. Unfortunately the data that was necessary to design such a system was not provided and therefore, this section of research only reached its preliminary stages. To date research has shown that there are no specific patterns of deceptive behaviour that are consistent in all people, across all situations (Zuckerman 1981). DScentTrail is a decision support system, incorporating artificial intelligence (AI), which is intended to be used by investigators and attempts to find ways around the problem stated by Zuckerman above

    DScentTrail: A new way of viewing deception

    Get PDF
    The DScentTrail System has been created to support and demonstrate research theories in the joint disciplines of computational inference, forensic psychology and expert decision-making in the area of counter-terrorism. DScentTrail is a decision support system, incorporating artificial intelligence, and is intended to be used by investigators. The investigator is presented with a visual representation of a suspectβ€Ÿs behaviour over time, allowing them to present multiple challenges from which they may prove the suspect guilty outright or receive cognitive or emotional clues of deception. There are links into a neural network, which attempts to identify deceptive behaviour of individuals; the results are fed back into DScentTrail hence giving further enrichment to the information available to the investigator

    Near Infrared Spectroscopy Describes Physiologic Payback Associated With Excess Postexercise Oxygen Consumption in Healthy Controls and Children With Complex Congenital Heart Disease

    Get PDF
    Exercise creates a physiologic burden with recovery from such effort crucial to adaptation. Excess postexercise oxygen consumption (EPOC) refers to the body’s increased metabolic need after work. This investigation was designed to determine the role of near infrared spectroscopy (NIRS) in the description of exercise recovery in healthy controls (NL) and children with congenital heart disease (CHD). Subjects were recruited with exercise testing performed to exhaustion. Exercise time (EXT), heart rate (HR), and oxygen consumption (VO2) were measured. Four-site NIRS (brain, kidney, deltoid, and vastus lateralis) were measured during exercise and into recovery to establish trends. Fifty individuals were recruited for each group (NL = 26 boys and 24 girls; CHD = 33 boys and 17 girls). Significant differences existed between EXT, VO2, and peak HR (P \u3c 0.01). NIRS values were examined at four distinct intervals: rest, peak work, and 2 and 5 min after exercise. Significant cerebral hyperemia was seen in children with CHD post exercise when compared to normal individuals in whom redistribution patterns were directed to somatic muscles. These identified trends support an immediate compensation of organ systems to re-establish homeostasis in peripheral beds through enhanced perfusion. Noninvasive NIRS monitoring helps delineate patterns of redistribution associated with EPOC in healthy adolescents and children with CHD

    Loads and aeroelasticity division research and technology accomplishments for FY 1985 and plans for FY 1986

    Get PDF
    The Langley Research Center Loads and Aeroelasticity Division's research accomplishments for FY85 and research plans for FY86 are presented. The rk under each branch (technical area) will be described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest

    Loads and Aeroelasticity Division research and technology accomplishments for FY 1984 and plans for FY 1985

    Get PDF
    The loads and aeroelasticity divisions research accomplishments are presented. The work under each branch or technical area, described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest

    The Last of the Finite Loop Amplitudes in QCD

    Get PDF
    We use on-shell recursion relations to determine the one-loop QCD scattering amplitudes with a massless external quark pair and an arbitrary number (n-2) of positive-helicity gluons. These amplitudes are the last of the unknown infrared- and ultraviolet-finite loop amplitudes of QCD. The recursion relations are similar to ones applied at tree level, but contain new non-trivial features corresponding to poles present for complex momentum arguments but absent for real momenta. We present the relations and the compact solutions to them, valid for all n. We also present compact forms for the previously-computed one-loop n-gluon amplitudes with a single negative helicity and the rest positive helicity.Comment: 45 pages, revtex, 7 figures, v2 minor correction

    A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores

    Get PDF
    The major element, trace element, and isotopic composition of mid-ocean ridge basalt glasses affected by the Azores hotspot are strongly correlated with H2O content of the glass. Distinguishing the relative importance of source chemistry and potential temperature in ridge-hotspot interaction therefore requires a comprehensive model that accounts for the effect of H2O in the source on melting behavior and for the effect of H2O in primitive liquids on the fractionation path. We develop such a model by coupling the latest version of the MELTS algorithm to a model for partitioning of water among silicate melts and nominally anhydrous minerals. We find that much of the variation in all major oxides except TiO2 and a significant fraction of the crustal thickness anomaly at the Azores platform are explained by the combined effects on melting and fractionation of up to ~700 ppm H2O in the source with only a small thermal anomaly, particularly if there is a small component of buoyantly driven active flow associated with the more H2O-rich melting regimes. An on-axis thermal anomaly of ~35Β°C in potential temperature explains the full crustal thickness increase of ~4 km approaching the Azores platform, whereas a β‰₯75Β°C thermal anomaly would be required in the absence of water or active flow. The polybaric hydrous melting and fractionation model allows us to solve for the TiO2, trace element and isotopic composition of the H2O-rich component in a way that self-consistently accounts for the changes in the melting and fractionation regimes resulting from enrichment, although the presence and concentration in the enriched component of elements more compatible than Dy cannot be resolved

    Information technologies that facilitate care coordination: provider and patient perspectives

    Get PDF
    Health information technology is a core infrastructure for the chronic care model, integrated care, and other organized care delivery models. From the provider perspective, health information exchange (HIE) helps aggregate and share information about a patient or population from several sources. HIE technologies include direct messages, transfer of care, and event notification services. From the patient perspective, personal health records, secure messaging, text messages, and other mHealth applications may coordinate patients and providers. Patient-reported outcomes and social media technologies enable patients to share health information with many stakeholders, including providers, caregivers, and other patients. An information architecture that integrates personal health record and mHealth applications, with HIEs that combine the electronic health records of multiple healthcare systems will create a rich, dynamic ecosystem for patient collaboration

    Tracking Control for FES-Cycling based on Force Direction Efficiency with Antagonistic Bi-Articular Muscles

    Full text link
    A functional electrical stimulation (FES)-based tracking controller is developed to enable cycling based on a strategy to yield force direction efficiency by exploiting antagonistic bi-articular muscles. Given the input redundancy naturally occurring among multiple muscle groups, the force direction at the pedal is explicitly determined as a means to improve the efficiency of cycling. A model of a stationary cycle and rider is developed as a closed-chain mechanism. A strategy is then developed to switch between muscle groups for improved efficiency based on the force direction of each muscle group. Stability of the developed controller is analyzed through Lyapunov-based methods.Comment: 8 pages, 4 figures, submitted to ACC201

    Generalizing Boolean Satisfiability I: Background and Survey of Existing Work

    Full text link
    This is the first of three planned papers describing ZAP, a satisfiability engine that substantially generalizes existing tools while retaining the performance characteristics of modern high-performance solvers. The fundamental idea underlying ZAP is that many problems passed to such engines contain rich internal structure that is obscured by the Boolean representation used; our goal is to define a representation in which this structure is apparent and can easily be exploited to improve computational performance. This paper is a survey of the work underlying ZAP, and discusses previous attempts to improve the performance of the Davis-Putnam-Logemann-Loveland algorithm by exploiting the structure of the problem being solved. We examine existing ideas including extensions of the Boolean language to allow cardinality constraints, pseudo-Boolean representations, symmetry, and a limited form of quantification. While this paper is intended as a survey, our research results are contained in the two subsequent articles, with the theoretical structure of ZAP described in the second paper in this series, and ZAP's implementation described in the third
    • …
    corecore