3,417 research outputs found

    Antenna Factorization in Strongly-Ordered Limits

    Full text link
    When energies or angles of gluons emitted in a gauge-theory process are small and strongly ordered, the emission factorizes in a simple way to all orders in perturbation theory. I show how to unify the various strongly-ordered soft, mixed soft-collinear, and collinear limits using antenna factorization amplitudes, which are generalizations of the Catani--Seymour dipole factorization function.Comment: 21 pages, 8 figures; final Phys Rev version, corrected definition of multiple-emission recosnstruction functions for strongly-ordered limit, added appendix with new form of double-emission antenna function valid in strongly-ordered limi

    Advanced Techniques for Multiparton Loop Calculations: A Minireview

    Get PDF
    We present an overview of techniques developed in recent years for the efficient calculation of one-loop multiparton amplitudes, in particular those relying on unitarity and collinear factorization.Comment: 5 pages, LaTeX/aipproc, presented at DIS '97, Chicago, IL, April 14-18, 199

    All-Orders Singular Emission in Gauge Theories

    Get PDF
    I present a class of functions unifying all singular limits for the emission of soft or collinear gluons in gauge-theory amplitudes at any order in perturbation theory. Each function is a generalization of the antenna functions of ref. [1]. The helicity-summed interferences these functions are thereby also generalizations to higher orders of the Catani--Seymour dipole factorization function.Comment: 5 pages, 1 figur

    On-Shell Methods in Perturbative QCD

    Get PDF
    We review on-shell methods for computing multi-parton scattering amplitudes in perturbative QCD, utilizing their unitarity and factorization properties. We focus on aspects which are useful for the construction of one-loop amplitudes needed for phenomenological studies at the Large Hadron Collider.Comment: 49 pages, 15 figures. v2: minor typos correcte

    Information technologies that facilitate care coordination: provider and patient perspectives

    Get PDF
    Health information technology is a core infrastructure for the chronic care model, integrated care, and other organized care delivery models. From the provider perspective, health information exchange (HIE) helps aggregate and share information about a patient or population from several sources. HIE technologies include direct messages, transfer of care, and event notification services. From the patient perspective, personal health records, secure messaging, text messages, and other mHealth applications may coordinate patients and providers. Patient-reported outcomes and social media technologies enable patients to share health information with many stakeholders, including providers, caregivers, and other patients. An information architecture that integrates personal health record and mHealth applications, with HIEs that combine the electronic health records of multiple healthcare systems will create a rich, dynamic ecosystem for patient collaboration

    Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea volcano, Hawaii

    Get PDF
    Major, minor, and dissolved volatile element concentrations were measured in tholeiitic glasses from the submarine portion (Puna Ridge) of the east rift zone of Kilauea Volcano, Hawaii. Dissolved H_(2)O and S concentrations display a wide range relative to nonvolatile incompatible elements at all depths. This range cannot be readily explained by fractional crystallization, degassing of H20 and S during eruption on the seafloor, or source region heterogeneities. Dissolved C0_2 concentrations, in contrast, show a positive correlation with eruption depth and typically agree within error with the solubility at that depth. We propose that most magmas along the Puna Ridge result from (I) mixing of a relatively volatile-rich, undegassed component with magmas that experienced low pressure (perhaps subaerial) degassing during which substantial H_(2)O, S, and C0_2 were lost, followed by (2) fractional crystallization of olivine, clinopyroxene, and plagioclase from this mixture to generate a residual liquid; and (3) further degassing, principally of C0_2 for samples erupted deeper than 1000 m, during eruption on the seafloor. The degassed end member may form at upper levels of the summit magma chamber (assuming less than lithostatic pressure gradients), during residence at shallow levels in the crust, or during sustained summit eruptions. The final phase of degassing during eruption on the seafloor occurs slowly enough to achieve melt/vapor equilibrium during exsolution of the typically CO_(2)-rich vapor phase. We predict that average Kilauean primary magmas with 16% MgO contain ~0.47 wt% H_(2)O, ~900 ppm S, and have δD values of ~-30 to -40‰. Our model predicts that submarine lavas from wholly submarine volcanoes (i.e., Loihi), for which there is no opportunity to generate the degassed end member by low pressure degassing, will be enriched in volatiles relative to those from volcanoes whose summits have breached the sea surface (i.e., Kilauea and Mauna Loa)

    IL5. Interactions of CO₂ with metal organic frameworks and metal oxide nanoclusters

    Get PDF
    Acid gases, especially CO2, play an important role in a range of large-scale energy applications. Acid gas conversion can make use of reactive sorbents and catalysts, but these materials must not substantially degrade under operating conditions. Metal oxides, metal organic frameworks, and clays may be used for these purposes, but interactions of acid gases with these complex materials are poorly understood. In order to improve our understanding of such materials, we have been using electronic structure methods to better understand these interactions in terms of ‘physisorption’ and ‘chemisorption’ type processes. The interactions of CO2 with models of MOF-2 (M2BDC4 for M = Co2+, Cu2+, and Zn2+), Group II oxide nanoclusters, Group IV and Group VI transition metal oxide nanoclusters, and actinide oxides have been predicted with density functional theory benchmarked by correlated molecular orbital theory calculations at the CCSD(T) level. The results are being correlated in terms of molecular properties such as Lewis acidities, redox capability, bond energies, and complexation energies. The work is supported by the Department of Energy, Basic Energy Sciences EFRC (UNCAGE-ME) and Geochemistry programs

    Concerted hydrogen atom exchange between three HF molecules

    Get PDF
    We have investigated the termolecular reaction involving concerted hydrogen exchange between three HF molecules, with particular emphasis on the effects of correlation at the various stationary points along the reaction. Using an extended basis, we have located the geometries of the stable hydrogen-bonded trimer, which is of C(sub 3h) symmetry, and the transition state for hydrogen exchange, which is of D(sub 3h) symmetry. The energies of the exchange reation were then evaluated at the correlated level, using a large atomic natural orbital basis and correlating all valence electrons. Several correlation treatments were used, namely, configration interaction with single and double excitations, coupled-pair functional, and coupled-cluster methods. We are thus able to measure the effect of accounting for size-extensivity. Zero-point corrections to the correlated level energetics were determined using analytic second derivative techniques at the SCF level. Our best calculations, which include the effects of connected triple excitations in the coupled-cluster procedure, indicate that the trimer is bound by 9 +/- 1 kcal/mol relative to three separate monomers, in excellent agreement with previous estimates. The barrier to concerted hydrogen exchange is 15 kcal/mol above the trimer, or only 4.7 kcal/mol above three separated monomers. Thus the barrier to hydrogen exchange between HF molecules via this termolecular process is very low
    corecore