10,163 research outputs found
Inferring Microscopic Kinetic Rates from Stationary State Distributions.
We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational principle in which the path entropy is maximized over the distribution of all possible trajectories, subject to basic kinetic constraints and some average dynamical observables. We illustrate the method by computing the solvation dynamics of water molecules from molecular dynamics trajectories
A simple measure of native-state topology and chain connectivity predicts the folding rates of two-state proteins with and without crosslinks
The folding rates of two-state proteins have been found to correlate with
simple measures of native-state topology. The most prominent among these
measures is the relative contact order (CO), which is the average CO or
'localness' of all contacts in the native protein structure, divided by the
chain length. Here, we test whether such measures can be generalized to capture
the effect of chain crosslinks on the folding rate. Crosslinks change the chain
connectivity and therefore also the localness of some of the the native
contacts. These changes in localness can be taken into account by the
graph-theoretical concept of effective contact order (ECO). The relative ECO,
however, the natural extension of the relative CO for proteins with crosslinks,
overestimates the changes in the folding rates caused by crosslinks. We suggest
here a novel measure of native-state topology, the relative logCO, and its
natural extension, the relative logECO. The relative logCO is the average value
for the logarithm of the CO of all contacts, divided by the logarithm of the
chain length. The relative log(E)CO reproduces the folding rates of a set of 26
two-state proteins without crosslinks with essentially the same high
correlation coefficient as the relative CO. In addition, it also captures the
folding rates of 8 two-state proteins with crosslinks.Comment: 13 pages, 2 tables, and 2 figure
Resonant enhanced multiphoton ionization studies of atomic oxygen
In resonant enhanced multiphoton ionization (REMPI), an atom absorbs several photons making a transition to a resonant intermediate state and subsequently ionizing out of it. With currently available tunable narrow-band lasers, the extreme sensitivity of REMPI to the specific arrangement of levels can be used to selectively probe minute amounts of a single species (atom) in a host of background material. Determination of the number density of atoms from the observed REMPI signal requires a knowledge of the multiphoton ionization cross sections. The REMPI of atomic oxygen was investigated through various excitation schemes that are feasible with available light sources. Using quantum defect theory (QDT) to estimate the various atomic parameters, the REMPI dynamics in atomic oxygen were studied incorporating the effects of saturation and a.c. Stark shifts. Results are presented for REMPI probabilities for excitation through various 2p(3) (4S sup o) np(3)P and 2p(3) (4S sup o) nf(3)F levels
Photoionization cross sections of rovibrational levels of the B^1Σ^+_u state of H_2
We report theoretical cross sections for direct photoionization of specific rovibrational levels of the B ^1Σ^+_u electronic state of H_2. The calculated cross sections differ considerably from values recently determined by resonant enhanced multiphoton ionization (REMPI) studies. In an attempt to understand the disagreement, we analyze in detail the REMPI dynamics and find that the multiphoton ionization probability is extremely sensitive to the spatial and temporal profiles of the laser pulses. Accurate characterization of laser profiles and their jitter is therefore necessary for a comparison between theory and experiment
- …
