18 research outputs found

    GC-MS-based metabolomics analysis unravels the therapeutic potential of Neolamarckia cadamba fruit peel

    Get PDF
    Kadam (Neolamarckia cadamba (Roxb.) is an evergreen tropical tree widely grown in Asia, particularly in India. Neolamarckia cadamba commonly known as kadam, cadamba or burflower tree. The roots, leaves, barks, and fruits of N. cadamba possess medicinal properties and are commonly used in the pharmaceutical industry. Fruit peels are the main waste and may contain various biologically active compounds. However, no prior knowledge about the therapeutic compounds of the peel. The objective of the present study was to unveil therapeutic compounds from the peel by Gas Chromatography–Mass Spectrometry (GC-MS) based metabolomics analysis. Metabolites from the kadam fruit peel were isolated and derivatized using MSTFA, characterized by the GC-MS analysis. Raw spectral data were pre-processed, and peak identification was performed using SHIMADZU Postrun analyse software. The metabolites in N. cadamba fruit peel were identified by comparing the peaks with the mass spectral reference database NIST v20. The results showed that the peel of kadam fruit contains 149 metabolites, which were further categorized into 46 different metabolite classes, with 52 different metabolic pathways and 63 biological functions. The principal roles of the metabolites were identified by functional annotation and enrichment analysis. It revealed that metabolites were responsible for anti-inflammation, anti-oxidant, anti-microbial, and anti-cancer properties. In summary, the peel of kadam fruit also contains various therapeutic compounds like other cadamba parts (i.e., roots, leaves, barks, and fruits). Further, comparing the peel with other parts discloses the peel-specific metabolites. The results obtained in this study could be useful for the pharmaceutical industry

    Renoprotective effect of tectorigenin glycosides isolated from Iris spuria L. (Zeal) against hyperoxaluria and hyperglycemia in NRK-49Fcells

    Get PDF
    Oxidative stress has been identified as an underlying factor in the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance and type 2 diabetes mellitus and it also play major role in kidney stone formation. The present study is aimed to elucidate the in vitro nephroprotective activity of two isoflavonoid glycosides, tectorigenin 7-O-β-D-glucosyl-(1→6)-β-D-glucoside (1) and tectorigenin 7-O-β-D-glucosyl-4'-O-β-D-glucoside (2) isolated from the n-BuOH fraction of Iris spuria L. (Zeal) rhizome MeOH extract against oxalate and high glucose-induced oxidative stress in NRK-49F cells. The results revealed that compounds 1 and 2 significantly increased the antioxidant enzyme activities and decreased MDA levels in both oxalate and high glucose stress. Treatment with these phytochemicals effectively down-regulated expression of crystal modulator genes and pro-fibrotic genes in oxalate and high glucose-mediated stress respectively. This study indicates cytoprotective, antioxidant, anti-urolithic and anti-diabetic effects of compounds 1 and 2 against oxalate and high glucose stress

    Myocardial inflammation, injury and infarction during on-pump coronary artery bypass graft surgery

    Get PDF
    Abstract Background Myocardial inflammation and injury occur during coronary artery bypass graft (CABG) surgery. We aimed to characterise these processes during routine CABG surgery to inform the diagnosis of type 5 myocardial infarction. Methods We assessed 87 patients with stable coronary artery disease who underwent elective CABG surgery. Myocardial inflammation, injury and infarction were assessed using plasma inflammatory biomarkers, high-sensitivity cardiac troponin I (hs-cTnI) and cardiac magnetic resonance imaging (CMR) using both late gadolinium enhancement (LGE) and ultrasmall superparamagnetic particles of iron oxide (USPIO). Results Systemic humoral inflammatory biomarkers (myeloperoxidase, interleukin-6, interleukin-8 and c-reactive protein) increased in the post-operative period with C-reactive protein concentrations plateauing by 48 h (median area under the curve (AUC) 7530 [interquartile range (IQR) 6088 to 9027] mg/L/48 h). USPIO-defined cellular myocardial inflammation ranged from normal to those associated with type 1 myocardial infarction (median 80.2 [IQR 67.4 to 104.8] /s). Plasma hs-cTnI concentrations rose by ≥50-fold from baseline and exceeded 10-fold the upper limit of normal in all patients. Two distinct patterns of peak cTnI release were observed at 6 and 24 h. After CABG surgery, new LGE was seen in 20% (n = 18) of patients although clinical peri-operative type 5 myocardial infarction was diagnosed in only 9% (n = 8). LGE was associated with the delayed 24-h peak in hs-cTnI and its magnitude correlated with AUC plasma hs-cTnI concentrations (r = 0.33, p 10-fold the 99th centile upper limit of normal that is not attributable to inflammatory or ischemic injury alone. Peri-operative type 5 myocardial infarction is often unrecognised and is associated with a delayed 24-h peak in plasma hs-cTnI concentrations

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Theoretical Insights into the Experimental Observation of Stable p‑Type Conductivity and Ferromagnetic Ordering in Vacuum-Hydrogenated TiO<sub>2</sub>

    No full text
    Tuning of electrical and magnetic properties to achieve stable p-type conductivity and room temperature ferromagnetism in undoped TiO<sub>2</sub> is quite challenging. Here both are attained simultaneously through a facile method of vacuum-hydrogenation, wherein vacuum annealing as well as hydrogenation play crucial roles. The p-type conductivity in hydrogenated TiO<sub>2</sub> is investigated through the Hall measurement studies, which show considerable enhancement in Hall mobility and electrical conductivity. The high and low pressures of hydrogenation show strong and weak ferromagnetic ordering, respectively, whereas the pristine TiO<sub>2</sub> NPs manifest paramagnetic behavior. In order to understand the mechanism of these characteristic changes, density functional theory (DFT) calculations are performed. DFT calculations reveal that the smaller amount of hydrogenation leads to gap-states above valence band maximum (VBM) due to the effect of hydrogen atoms 1s orbitals and by the formation of ∼Ti–H and ∼O–H bonds. Further increase in the hydrogenation changes the ∼O–H bond to the ∼H<sub>2</sub>O bond, and these H<sub>2</sub>O molecules will be easily detached during the next vacuum annealing step. These processes will lead to the formation of excess oxygen vacancies and cause the localization of excess electrons on Ti atoms. This results in emergence of well pronounced midgap states in the forbidden bandgap. These midgap states are mostly contributed by the 3d orbitals of Ti atoms. DFT studies also disclose that the higher spin polarization for the high hydrogen concentration, which is reflected as the ferromagnetic ordering in the experimental results
    corecore