476 research outputs found
Quenched lattice calculation of the B --> D l nu decay rate
We calculate, in the continuum limit of quenched lattice QCD, the form factor
that enters in the decay rate of the semileptonic decay B --> D l nu. Making
use of the step scaling method (SSM), previously introduced to handle two scale
problems in lattice QCD, and of flavour twisted boundary conditions we extract
G(w) at finite momentum transfer and at the physical values of the heavy quark
masses. Our results can be used in order to extract the CKM matrix element Vcb
by the experimental decay rate without model dependent extrapolations.Comment: 5 pages, 4 figures, accepted for publication on Phys. Lett. B,
corrected one typ
Hadronic Decays of Excited Heavy Mesons
We studied the hadronic decays of excited states of heavy mesons (D, D_s, B
and B_s) to lighter states by emission of pi, eta or K. Wavefunctions and
energy levels of these excited states are determined using a Dirac equation for
the light quark in the potential generated by the heavy quark (including first
order corrections in the heavy quark expansion). Transition amplitudes are
computed in the context of the Heavy Chiral Quark Model.Comment: 4 pages (incl. figures), proceedings of the IV International
Conference on "Hyperons, Charm and Beauty Hadrons", Valencia (Spain
The three-loop beta function of SU(N) lattice gauge theories with Wilson fermions
We calculate the third coefficient of the lattice beta function associated
with the Wilson formulation for both gauge fields and fermions. This allows us
to evaluate the three-loop correction (linear in ) to the relation
between the lattice Lambda-parameter and the bare coupling , which is
important in order to verify asymptotic scaling predictions. Our calculation
also leads to the two-loop relation between the coupling renormalized in the
MSbar scheme and .
The original version of this paper contained a numerical error in one of the
diagrams, which has now been corrected. The calculations, as well as the layout
of the paper have remained identical, but there are some important changes in
the numerical results.Comment: One 14-page LaTeX file, one PostScript file containing 2 figures.
Corrected a numerical error in one of the diagrams. The calculations, as well
as the layout of the paper have remained unaffected, but there are some
important changes in the numerical result
Developments and new applications of numerical stochastic perturbation theory
A review of new developments in numerical stochastic perturbation theory
(NSPT) is presented. In particular, the status of the extension of the method
to gauge fixed lattice QCD is reviewed and a first application to compact
(scalar) QED is presented. Lacking still a general proof of the convergence of
the underlying stochastic processes, a self-consistent method for testing the
results is discussed.Comment: 3 pages, 1 figure. Poster presented at the Lattice97 conference,
Edinburgh, U
Heavy-Meson Observables at One-Loop in Partially Quenched Chiral Perturbation Theory
I present one-loop level calculations of the Isgur-Wise functions for B ->
D^{(*)} + e + nu, of the matrix elements of isovector twist-2 operators in B
and D mesons, and the matrix elements for the radiative decays D^* -> D + gamma
in partially quenched heavy quark chiral perturbation theory. Such expressions
are required in order to extrapolate from the light quark masses used in
lattice simulations of the foreseeable future to those of nature.Comment: 13 pages, 3 fig
Brief review on semileptonic B decays
We concisely review semileptonic B decays, focussing on recent progress on
both theoretical and experimental sides.Comment: 18 pages, 2 figures; version to be published in Mod. Phys. Lett.
Improved Pseudofermion Approach for All-Point Propagators
Quark propagators with arbitrary sources and sinks can be obtained more
efficiently using a pseudofermion method with a mode-shifted action.
Mode-shifting solves the problem of critical slowing down (for light quarks)
induced by low eigenmodes of the Dirac operator. The method allows the full
physical content of every gauge configuration to be extracted, and should be
especially helpful for unquenched QCD calculations. The method can be applied
for all the conventional quark actions: Wilson, Sheikoleslami-Wohlert,
Kogut-Susskind, as well as Ginsparg-Wilson compliant overlap actions. The
statistical properties of the method are examined and examples of physical
processes under study are presented.Comment: LateX, 26 pages, 10 eps figure
The gradient flow running coupling with twisted boundary conditions
We study the gradient flow for Yang-Mills theories with twisted boundary
conditions. The perturbative behavior of the energy density is used to define a running coupling at a scale given by the
linear size of the finite volume box. We compute the non-perturbative running
of the pure gauge coupling constant and conclude that the technique is
well suited for further applications due to the relatively mild cutoff effects
of the step scaling function and the high numerical precision that can be
achieved in lattice simulations. We also comment on the inclusion of matter
fields.Comment: 27 pages. LaTe
The (LATTICE) QCD Potential and Running Coupling: How to Accurately Interpolate between Multi-Loop QCD and the String Picture
We present a simple parameterization of a running coupling constant, defined
via the static potential, that interpolates between 2-loop QCD in the UV and
the string prediction in the IR. Besides the usual \Lam-parameter and the
string tension, the coupling depends on one dimensionless parameter,
determining how fast the crossover from UV to IR behavior occurs (in principle
we know how to take into account any number of loops by adding more
parameters). Using a new Ansatz for the LATTICE potential in terms of the
continuum coupling, we can fit quenched and unquenched Monte Carlo results for
the potential down to ONE lattice spacing, and at the same time extract the
running coupling to high precision. We compare our Ansatz with 1-loop results
for the lattice potential, and use the coupling from our fits to quantitatively
check the accuracy of 2-loop evolution, compare with the Lepage-Mackenzie
estimate of the coupling extracted from the plaquette, and determine Sommer's
scale much more accurately than previously possible. For pure SU(3) we
find that the coupling scales on the percent level for .Comment: 47 pages, incl. 4 figures in LaTeX [Added remarks on correlated vs.
uncorrelated fits in sect. 4; corrected misprints; updated references.
Light Quark Masses from Lattice Quark Propagators at Large Momenta
We compute non-perturbatively the average up-down and strange quark masses
from the large momentum (short-distance) behaviour of the quark propagator in
the Landau gauge. This method, which has never been applied so far, does not
require the explicit calculation of the quark mass renormalization constant.
Calculations were performed in the quenched approximation, by using
O(a)-improved Wilson fermions. The main results of this study are
ml^RI(2GeV)=5.8(6)MeV and ms^RI(2GeV)=136(11)MeV. Using the relations between
different schemes, obtained from the available four-loop anomalous dimensions,
we also find ml^RGI=7.6(8)MeV and ms^RGI=177(14)MeV, and the MSbar-masses,
ml^MS(2GeV)=4.8(5)MeV and ms^MS(2GeV)=111(9)MeV.Comment: 19 pages, 2 references added, version to appear in Phys. Rev.
- …
