426 research outputs found

    Apolipoprotein L1 gene variants associate with prevalent kidney but not prevalent cardiovascular disease in the Systolic Blood Pressure Intervention Trial.

    Get PDF
    Apolipoprotein L1 gene (APOL1) G1 and G2 coding variants are strongly associated with chronic kidney disease (CKD) in African Americans (AAs). Here APOL1 association was tested with baseline estimated glomerular filtration rate (eGFR), urine albumin:creatinine ratio (UACR), and prevalent cardiovascular disease (CVD) in 2571 AAs from the Systolic Blood Pressure Intervention Trial (SPRINT), a trial assessing effects of systolic blood pressure reduction on renal and CVD outcomes. Logistic regression models that adjusted for potentially important confounders tested for association between APOL1 risk variants and baseline clinical CVD (myocardial infarction, coronary, or carotid artery revascularization) and CKD (eGFR under 60 ml/min per 1.73 m(2) and/or UACR over 30 mg/g). AA SPRINT participants were 45.3% female with a mean (median) age of 64.3 (63) years, mean arterial pressure 100.7 (100) mm Hg, eGFR 76.3 (77.1) ml/min per 1.73 m(2), and UACR 49.9 (9.2) mg/g, and 8.2% had clinical CVD. APOL1 (recessive inheritance) was positively associated with CKD (odds ratio 1.37, 95% confidence interval 1.08-1.73) and log UACR estimated slope (β) 0.33) and negatively associated with eGFR (β -3.58), all significant. APOL1 risk variants were not significantly associated with prevalent CVD (1.02, 0.82-1.27). Thus, SPRINT data show that APOL1 risk variants are associated with mild CKD but not with prevalent CVD in AAs with a UACR under 1000 mg/g

    Association Analysis in African Americans of European-Derived Type 2 Diabetes Single Nucleotide Polymorphisms From Whole-Genome Association Studies

    Get PDF
    OBJECTIVE— Several whole-genome association studies have reported identification of type 2 diabetes susceptibility genes in various European-derived study populations. Little investigation of these loci has been reported in other ethnic groups, specifically African Americans. Striking differences exist between these populations, suggesting they may not share identical genetic risk factors. Our objective was to examine the influence of type 2 diabetes genes identified in whole-genome association studies in a large African American case-control population

    Differential Effects of MYH9 and APOL1 Risk Variants on FRMD3 Association with Diabetic ESRD in African Americans

    Get PDF
    Single nucleotide polymorphisms (SNPs) in MYH9 and APOL1 on chromosome 22 (c22) are powerfully associated with non-diabetic end-stage renal disease (ESRD) in African Americans (AAs). Many AAs diagnosed with type 2 diabetic nephropathy (T2DN) have non-diabetic kidney disease, potentially masking detection of DN genes. Therefore, genome-wide association analyses were performed using the Affymetrix SNP Array 6.0 in 966 AA with T2DN and 1,032 non-diabetic, non-nephropathy (NDNN) controls, with and without adjustment for c22 nephropathy risk variants. No associations were seen between FRMD3 SNPs and T2DN before adjusting for c22 variants. However, logistic regression analysis revealed seven FRMD3 SNPs significantly interacting with MYH9—a finding replicated in 640 additional AA T2DN cases and 683 NDNN controls. Contrasting all 1,592 T2DN cases with all 1,671 NDNN controls, FRMD3 SNPs appeared to interact with the MYH9 E1 haplotype (e.g., rs942280 interaction p-value = 9.3E−7 additive; odds ratio [OR] 0.67). FRMD3 alleles were associated with increased risk of T2DN only in subjects lacking two MYH9 E1 risk haplotypes (rs942280 OR = 1.28), not in MYH9 E1 risk allele homozygotes (rs942280 OR = 0.80; homogeneity p-value = 4.3E−4). Effects were weaker stratifying on APOL1. FRMD3 SNPS were associated with T2DN, not type 2 diabetes per se, comparing AAs with T2DN to those with diabetes lacking nephropathy. T2DN-associated FRMD3 SNPs were detectable in AAs only after accounting for MYH9, with differential effects for APOL1. These analyses reveal a role for FRMD3 in AA T2DN susceptibility and accounting for c22 nephropathy risk variants can assist in detecting DN susceptibility genes

    A genome-wide association study for diabetic nephropathy genes in African Americans

    Get PDF
    A genome-wide association study was performed using the Affymetrix 6.0 chip to identify genes associated with diabetic nephropathy in African Americans. Association analysis was performed adjusting for admixture in 965 type 2 diabetic African American patients with end-stage renal disease (ESRD) and in 1029 African Americans without type 2 diabetes or kidney disease as controls. The top 724 single nucleotide polymorphisms (SNPs) with evidence of association to diabetic nephropathy were then genotyped in a replication sample of an additional 709 type 2 diabetes-ESRD patients and 690 controls. SNPs with evidence of association in both the original and replication studies were tested in additional African American cohorts consisting of 1246 patients with type 2 diabetes without kidney disease and 1216 with non-diabetic ESRD to differentiate candidate loci for type 2 diabetes-ESRD, type 2 diabetes, and/or all-cause ESRD. Twenty-five SNPs were significantly associated with type 2 diabetes-ESRD in the genome-wide association and initial replication. Although genome-wide significance with type 2 diabetes was not found for any of these 25 SNPs, several genes, including RPS12, LIMK2, and SFI1 are strong candidates for diabetic nephropathy. A combined analysis of all 2890 patients with ESRD showed significant association SNPs in LIMK2 and SFI1 suggesting that they also contribute to all-cause ESRD. Thus, our results suggest that multiple loci underlie susceptibility to kidney disease in African Americans with type 2 diabetes and some may also contribute to all-cause ESRD

    APOL1 Kidney-Risk Variants Induce Mitochondrial Fission

    Get PDF
    IntroductionAPOL1 G1 and G2 nephropathy-risk variants cause mitochondrial dysfunction and contribute to kidney disease. Analyses were performed to determine the genetic regulation of APOL1 and elucidate potential mechanisms in APOL1-nephropathy.MethodsA global gene expression analysis was performed in human primary renal tubule cell lines derived from 50 African American individuals. Follow-up gene knock out, cell-based rescue, and microscopy experiments were performed.ResultsAPOL1 genotypes did not alter APOL1 expression levels in the global gene expression analysis. Expression quantitative trait locus (eQTL) analysis in polyinosinic-polycytidylic acid (poly IC)-stimulated renal tubule cells revealed that single nucleotide polymorphism (SNP) rs513349 adjacent to BAK1 was a trans eQTL for APOL1 and a cis eQTL for BAK1; APOL1 and BAK1 were co-expressed in cells. BAK1 knockout in a human podocyte cell line resulted in diminished APOL1 protein, supporting a pivotal effect for BAK1 on APOL1 expression. Because BAK1 is involved in mitochondrial dynamics, mitochondrial morphology was examined in primary renal tubule cells and HEK293 Tet-on cells of various APOL1 genotypes. Mitochondria in APOL1 wild-type (G0G0) tubule cells maintained elongated morphology when stimulated by low-dose poly IC, whereas those with G1G1, G2G2, and G1G2 genotypes appeared to fragment. HEK293 Tet-on cells overexpressing APOL1 G0, G1, and G2 were created; G0 cells appeared to promote mitochondrial fusion, whereas G1 and G2 induced mitochondrial fission. The mitochondrial dynamic regulator Mdivi-1 significantly preserved cell viability and mitochondrial cristae structure and reversed mitochondrial fission induced by overexpression of G1 and G2.ConclusionResults suggest the mitochondrial fusion/fission pathway may be a therapeutic target in APOL1-nephropathy

    Prevalence of Diabetes in U.S. Youth in 2009: The SEARCH for Diabetes in Youth Study

    Get PDF
    OBJECTIVETo estimate the prevalence of diabetes in U.S. youth aged 190,000 (1 of 433) youth aged <20 years in the U.S., with racial and ethnic disparities seen in diabetes prevalence, overall and by diabetes type
    corecore