50 research outputs found

    The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics

    Get PDF
    The current laboratory study is evaluating the effect of hydrofluoric acid etching duration on the surface characteristics of five silica-based glass ceramics. Changes in the pore pattern, crystal structure, roughness, and wettability were compared and evaluated. Seventy-five rectangularly shaped specimens were cut from each material (IPS e-max (TM), Dentsply Celtra (TM), Vita Suprinity (TM), Vita mark II (TM), and Vita Suprinity FC (TM)); the sectioned samples were finished, polished, and ultrasonically cleaned. Specimens were randomly assigned into study groups: control (no etching) and four experimental groups (20, 40, 80 and 160 s of etching). The etched surfaces' microstructure including crystal structure, pore pattern, pore depth, and pore width was studied under a scanning electron microscope, and the surface roughness and wettability were analyzed using a non-contact surface profilometer and a contact angle measuring device, respectively. The results were statistically analyzed using one-way analysis of variance (ANOVA) and the post hoc Tukey's test. The results showed a significant change in the pore number, pore pattern, crystal structure, surface roughness, and wettability with increased etching duration. Etching for a short time resulted in small pores, and etching for longer times resulted in wider, irregular grooves. A significant increase in the surface roughness and wettability was observed with an increase in the etching duration. The findings also suggested a strong association between the surface roughness and wettability

    Preliminary fabrication and characterization of electron beam melted Ti-6Al-4V customized dental implant

    Get PDF
    The current study was aimed to fabricate customized root form dental implant using additive manufacturing technique for the replacement of missing teeth. The root form dental implant was designed using Geomagic (TM) and Magics (TM), the designed implant was directly manufactured by layering technique using ARCAM A2 (TM) electron beam melting system by employing medical grade Ti- 6Al-4V alloy powder. Furthermore, the fabricated implant was characterized in terms of certain clinically important parameters such as surface microstructure, surface topography, chemical purity and internal porosity. Results confirmed that, fabrication of customized dental implants using additive rapid manufacturing technology offers an attractive method to produce extremely pure form of customized titanium dental implants, the rough and porous surface texture obtained is expected to provide better initial implant stabilization and superior osseointegration. (C) 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University

    Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi

    Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    Get PDF
    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation

    Optical coherence tomography—current technology and applications in clinical and biomedical research

    Get PDF

    Ancestral State Reconstruction Reveals Rampant Homoplasy of Diagnostic Morphological Characters in Urticaceae, Conflicting with Current Classification Schemes

    Get PDF
    Urticaceae is a family with more than 2000 species, which contains remarkable morphological diversity. It has undergone many taxonomic reorganizations, and is currently the subject of further systematic studies. To gain more resolution in systematic studies and to better understand the general patterns of character evolution in Urticaceae, based on our previous phylogeny including 169 accessions comprising 122 species across 47 Urticaceae genera, we examined 19 diagnostic characters, and analysed these employing both maximum-parsimony and maximum-likelihood approaches. Our results revealed that 16 characters exhibited multiple state changes within the family, with ten exhibiting >eight changes and three exhibiting between 28 and 40. Morphological synapomorphies were identified for many clades, but the diagnostic value of these was often limited due to reversals within the clade and/or homoplasies elsewhere. Recognition of the four clades comprising the family at subfamily level can be supported by a small number carefully chosen defining traits for each. Several non-monophyletic genera appear to be defined only by characters that are plesiomorphic within their clades, and more detailed work would be valuable to find defining traits for monophyletic clades within these. Some character evolution may be attributed to adaptive evolution in Urticaceae due to shifts in habitat or vegetation type. This study demonstrated the value of using phylogeny to trace character evolution, and determine the relative importance of morphological traits for classification

    Micro and Nano Structural Analysis of Dental Ceramic and Luting Resin Interface and the Effect of Water Exposure on Integrity of Cement Interface

    No full text
    The current study was aimed to evaluate-by micro and nano-structural analysis-the interface between dental ceramic and resin materials. The degree of resin impregnation into the etched micro patterns, the nano-mechanical properties of the resin-ceramic interface and the effect of subjecting to exposure in boiling water on resin-ceramic interface were studied. Three silica based glass ceramics were compared and contrasted: twenty samples from Computer Aided Design (CAD) blocks of each material were prepared. The specimens were finished, polished, ultrasonically cleaned, and etched with suitable acid. The specimens were randomly divided into two study groups to evaluate the effect of primer on resin cement impregnation. Each group of specimens were further divided into two subgroups to compare and contrast the difference in resin impregnation between adhesive resin and resin composite cement. The resin-ceramic interface was examined under scanning electron microscope and nano-mechanical properties were analyzed using a nano-indenter. The results were statistically analyzed using multivariate analysis of variance, a post hoc test, and regression analysis at a significance level of p<0.05. The results showed better resin impregnation of adhesive resin on primer treated specimens than resin composite cement. The specimens with the primer treatment and application of adhesive resin exhibited higher elastic moduli (46.07 GPa) and nano-hardness (2.02 GPa) even after subjecting to exposure in boiling water

    Phytochemical Characterization and Pharmacological Properties of Lichen Extracts from Cetrarioid Clade by Multivariate Analysis and Molecular Docking

    No full text
    Introduction. Lichens, due to the presence of own secondary metabolites such as depsidones and depsides, became a promising source of health-promoting organisms with pharmacological activities. However, lichens and their active compounds have been much less studied. Therefore, the present study aims to evaluate for the first time the antioxidant capacity and enzyme inhibitory activities of 14 lichen extracts belonging to cetrarioid clade in order to identify new natural products with potential pharmacological activity. Materials and Methods. In this study, an integrated strategy was applied combining multivariate statistical analysis (principal component analysis and hierarchical cluster analysis), phytochemical identification, activity evaluation (in vitro battery of antioxidant assays FRAP, DPPH, and ORAC), and enzyme inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and molecular profiling with in silico docking studies of the most promising secondary metabolites. Results. Among fourteen lichen samples, Dactylina arctica stands out for its higher antioxidant capacities, followed by Nephromopsis stracheyi, Tuckermannopsis americana, Vulpicida pinastri, and Asahinea scholanderi. Moreover, Asahinea scholanderi and Cetraria cucullata extracts were the best inhibitors of AChE and BuChE. The major secondary metabolites identified by HPLC were alectoronic acid and alpha-collatolic acid for Asahinea scholanderi and usnic acid and protolichesterinic acid for Cetraria cucullata. Molecular docking studies revealed that alectoronic acid exhibited the strongest binding affinity with both AChE and BuChE with and without water molecules. Conclusions. Our results concluded that these species could be effective in the treatment of neurodegenerative diseases, being mandatory further investigation in cell culture and in vivo models
    corecore