3,546 research outputs found

    Social contribution settings and newcomer retention in humanitarian crowd mapping

    Get PDF
    Organisers of crowd mapping initiatives seek to identify practices that foster an active contributor community. Theory suggests that social contribution settings can provide important support functions for newcomers, yet to date there are no empirical studies of such an effect. We present the first study that evaluates the relationship between colocated practice and newcomer retention in a crowd mapping community, involving hundreds of first-time participants. We find that certain settings are associated with a significant increase in newcomer retention, as are regular meetings, and a greater mix of experiences among attendees. Factors relating to the setting such as food breaks and technical disruptions have comparatively little impact. We posit that successful social contribution settings serve as an attractor: they provide opportunities to meet enthusiastic contributors, and can capture prospective contributors who have a latent interest in the practice

    Exploring maintenance practices in crowd-mapping

    Get PDF
    Crowd-mapping is a form of collaborative work that empowers users to gather and share geographic knowledge. OpenStreetMap is one of the most successful examples of such paradigm, where the goal of building a global map of the world is collectively performed by over 2M contributors. Despite geographic information being intrinsically evolving, little research has so far gone into analysing maintenance practices in these domains. In this paper, we perform a preliminary exploration to quantitatively capture maintenance dynamics in geographic crowd-sourced datasets, in terms of: the extent to which different maintenance actions are taking place, the type of spatial information that is being maintained, and who engages in these practices. We apply this method to 117 countries in OSM, over one year of mapping activity. Our findings reveal that, although maintenance practices vary substantially from country to country in terms of how widespread they are, strong commonalities exist in terms of what metadata is being maintained and by whom

    On Doppler tracking in cosmological spacetimes

    Get PDF
    We give a rigorous derivation of the general-relativistic formula for the two-way Doppler tracking of a spacecraft in Friedmann-Lemaitre-Robertson-Walker and in McVittie spacetimes. The leading order corrections of the so-determined acceleration to the Newtonian acceleration are due to special-relativistic effects and cosmological expansion. The latter, although linear in the Hubble constant, is negligible in typical applications within the Solar System.Comment: 10 pages, 1 figure. Journal versio

    Preface

    Get PDF

    Quantum fluctuations for drag free geodesic motion

    Full text link
    The drag free technique is used to force a proof mass to follow a geodesic motion. The mass is protected from perturbations by a cage, and the motion of the latter is actively controlled to follow the motion of the proof mass. We present a theoretical analysis of the effects of quantum fluctuations for this technique. We show that a perfect drag free operation is in principle possible at the quantum level, in spite of the back action exerted on the mass by the position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change

    Trapping of strangelets in the geomagnetic field

    Full text link
    Strangelets coming from the interstellar medium (ISM) are an interesting target to experiments searching for evidence of this hypothetic state of hadronic matter. We entertain the possibility of a {\it trapped} strangelet population, quite analogous to ordinary nuclei and electron belts. For a population of strangelets to be trapped by the geomagnetic field, these incoming particles would have to fulfill certain conditions, namely having magnetic rigidities above the geomagnetic cutoff and below a certain threshold for adiabatic motion to hold. We show in this work that, for fully ionized strangelets, there is a narrow window for stable trapping. An estimate of the stationary population is presented and the dominant loss mechanisms discussed. It is shown that the population would be substantially enhanced with respect to the ISM flux (up to two orders of magnitude) due to quasi-stable trapping.Comment: 10 pp., 5 figure

    Can the Pioneer anomaly be induced by velocity-dependent forces? Tests in the outer regions of solar system with planetary dynamics

    Full text link
    In this paper we analyze the impact on the orbital motions of the outer planets of the solar system from Jupiter to Pluto of some velocity-dependent forces recently proposed to phenomenologically explain the Pioneer anomaly, and compare their predictions (secular variations of the longitude of perihelion \varpi or of the semimajor axis a and the eccentricity e) with the latest observational determinations by E.V. Pitjeva with the EPM2006 ephemerides. It turns out that while the predicted centennial shifts of a are so huge that they would have been easily detected for all planets with the exception of Neptune, the predicted anomalous precessions of \varpi are too small, with the exception of Jupiter, so that they are still compatible with the estimated corrections to the standard Newton-Einstein perihelion precessions. As a consequence, we incline to discard those extra-forces predicting secular variations of a and e, also for some other reasons, and to give a chance, at least observationally, to those models predicting still undetectable perihelion precessions. Of course, adequate theoretical foundations for them should be found.Comment: LaTex, WS macros, 12 pages, 4 tables, 4 figures, 30 references. To appear in Int. J. Mod. Phys.

    Surface effects in flow boiling of R134a in microtubes

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2011 ElsevierThe inner surfaces of microtubes may be influenced strongly by the process of making them due to manufacturing difficulties at these scales compared to larger ones, e.g. the surface characteristics of a seamless cold drawn tube may differ from those of a welded tube. Accordingly, flow boiling heat transfer characteristics may vary. In addition, there is no common agreement between researchers on the criteria of selecting tubes for flow boiling experiments. Instead, tubes are usually ordered from commercial suppliers, in many cases without taking into consideration the manufacturing method and its effect on the heat transfer process. This may explain some of the discrepancies in heat transfer characteristics which are found in the open literature. This paper presents a comparison between experimental flow boiling heat transfer results obtained using two different metallic tubes. The first one is a seamless cold drawn stainless steel tube of 1.1 mm inner diameter while the second is a welded stainless steel tube of 1.16 mm inner diameter. Both tubes have a heated length of 150 mm and the flow direction is vertically upwards. The tubes were heated using DC current. Other experimental conditions include: 8 bar system pressure, 300 kg/m2 s mass flux, about 5K inlet sub-cooling and up to 0.9 exit quality. The results are presented in the form of local heat transfer coefficient versus local quality and axial distance. Also, the boiling curves of the two tubes are discussed. The results show a significant effect of tube inner surface morphology on the heat transfer characteristics

    Post-Einsteinian tests of gravitation

    Full text link
    Einstein gravitation theory can be extended by preserving its geometrical nature but changing the relation between curvature and energy-momentum tensors. This change accounts for radiative corrections, replacing the Newton gravitation constant by two running couplings which depend on scale and differ in the two sectors of traceless and traced tensors. The metric and curvature tensors in the field of the Sun, which were obtained in previous papers within a linearized approximation, are then calculated without this restriction. Modifications of gravitational effects on geodesics are then studied, allowing one to explore phenomenological consequences of extensions lying in the vicinity of general relativity. Some of these extended theories are able to account for the Pioneer anomaly while remaining compatible with tests involving the motion of planets. The PPN Ansatz corresponds to peculiar extensions of general relativity which do not have the ability to meet this compatibility challenge.Comment: 19 pages Corrected typo

    Tidal Dynamics in Cosmological Spacetimes

    Get PDF
    We study the relative motion of nearby free test particles in cosmological spacetimes, such as the FLRW and LTB models. In particular, the influence of spatial inhomogeneities on local tidal accelerations is investigated. The implications of our results for the dynamics of the solar system are briefly discussed. That is, on the basis of the models studied in this paper, we estimate the tidal influence of the cosmic gravitational field on the orbit of the Earth around the Sun and show that the corresponding temporal rate of variation of the astronomical unit is negligibly small.Comment: 12 pages, no figures, REVTeX 4.0; appendix added, new references, and minor changes throughout; to appear in Classical and Quantum Gravity; v4: error in (A24) of Appendix A corrected, results and conclusions unchanged. We thank L. Iorio for pointing out the erro
    • 

    corecore