78 research outputs found

    Schutz ist gut, Vertrauen ist besser

    Get PDF

    QED One-loop Corrections to a Macroscopic Magnetic Dipole

    Get PDF
    We consider the field equations of a static magnetic field including one-loop QED corrections, and calculate the corrections to the field of a magnetic dipole. PACS: 12.20.Ds, 97.60.Jd, 97.60.GbComment: 11 pages, 4 figures, to appear in Journal of Physics

    Manufacturing of nanostructures with high aspect ratios using soft UV-nanoimprint lithography with bi- and trilayer resist systems

    Get PDF
    In this contribution we introduce new multilayer (bilayer and trilayer) resist systems for the generation of nanostructures with high aspect ratios of up to 14:1 on 4-in. full wafer scale. The bilayer stack consists of a bottom resist layer (lift off polymer LOR1A) and an UV-curable top resist layer (UV-NIL resist mr-NIL210 200 nm). The top resist is structured by UV-nanoimprint lithography with a soft polydimethysiloxane (PDMS) stamp (soft UV-NIL). After removal of the residual layer a wet chemical development is performed to achieve an isotropic undercut underneath the nanostructures in the top layer. This undercut is mandatory in order to perform a reliable and precise lift-off. The bilayer system is applicable on both silicon and fused silica. For a higher variety and combination of different resists, a trilayer system is investigated. A layer stack with new materials for bottom and top layer is presented. An intermediate layer made of silicon oxide by low temperature ICP-PECVD is added between a tailor-made top resist (mr-NIL213FC 200 nm) and an organic transfer layer (UL1). The intermediate layer serves as hard mask in order to etch the bottom layer isotropically utilizing a plasma etch process and thus replacing the wet-chemical development step. Subsequently, a thin metal layer is deposited onto the structured resist stack by electron beam evaporation. After lift-off, a nanostructured metal mask remains on the substrate providing a high selectivity during the following plasma etch step. A cryogenic ICPRIE etch process creates high aspect ratio nanostructures within the substrate. An aspect ratio of 14:1 was achieved

    Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species

    Get PDF
    We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals

    Highly efficient passive Tesla valves for microfluidic applications

    Get PDF
    A multistage optimization method is developed yielding Tesla valves that are efficient even at low flow rates, characteristic, e.g., for almost all microfluidic systems, where passive valves have intrinsic advantages over active ones. We report on optimized structures that show a diodicity of up to 1.8 already at flow rates of 20 μl s−1 corresponding to a Reynolds number of 36. Centerpiece of the design is a topological optimization based on the finite element method. It is set-up to yield easy-to-fabricate valve structures with a small footprint that can be directly used in microfluidic systems. Our numerical two-dimensional optimization takes into account the finite height of the channel approximately by means of a so-called shallow-channel approximation. Based on the three-dimensionally extruded optimized designs, various test structures were fabricated using standard, widely available microsystem manufacturing techniques. The manufacturing process is described in detail since it can be used for the production of similar cost-effective microfluidic systems. For the experimentally fabricated chips, the efficiency of the different valve designs, i.e., the diodicity defined as the ratio of the measured pressure drops in backward and forward flow directions, respectively, is measured and compared to theoretical predictions obtained from full 3D calculations of the Tesla valves. Good agreement is found. In addition to the direct measurement of the diodicities, the flow profiles in the fabricated test structures are determined using a two-dimensional microscopic particle image velocimetry (μPIV) method. Again, a reasonable good agreement of the measured flow profiles with simulated predictions is observed

    Cognitive dimensions of predator responses to imperfect mimicry?

    Get PDF
    Many palatable insects, for example hoverflies, deter predators by mimicking well-defended insects such as wasps. However, for human observers, these flies often seem to be little better than caricatures of wasps – their visual appearance and behaviour are easily distinguishable. This imperfect mimicry baffles evolutionary biologists, because one might expect natural selection to do a more thorough job. Here we discuss two types of cognitive processes that might explain why mimics distinguishable mimics might enjoy increased protection from predation. Speed accuracy tradeoffs in predator decision making might give imperfect mimics sufficient time to escape, and predators under time constraint might avoid time-consuming discriminations between well-defended models and inaccurate edible mimics, and instead adopt a “safety first” policy of avoiding insects with similar appearance. Categorization of prey types by predators could mean that wholly dissimilar mimics may be protected, provided they share some common property with noxious prey

    Ressourcenschonung für Berlin

    Get PDF
    RESSOURCENSCHONUNG FÜR BERLIN Ressourcenschonung für Berlin / Knappe, Florian (Rights reserved) ( -

    Distinct translatome changes in specific neural populations precede electroencephalographic changes in prion-infected mice

    Full text link
    Selective vulnerability is an enigmatic feature of neurodegenerative diseases (NDs), whereby a widely expressed protein causes lesions in specific cell types and brain regions. Using the RiboTag method in mice, translational responses of five neural subtypes to acquired prion disease (PrD) were measured. Pre-onset and disease onset timepoints were chosen based on longitudinal electroencephalography (EEG) that revealed a gradual increase in theta power between 10- and 18-weeks after prion injection, resembling a clinical feature of human PrD. At disease onset, marked by significantly increased theta power and histopathological lesions, mice had pronounced translatome changes in all five cell types despite appearing normal. Remarkably, at a pre-onset stage, prior to EEG and neuropathological changes, we found that 1) translatomes of astrocytes indicated reduced synthesis of ribosomal and mitochondrial components, 2) glutamatergic neurons showed increased expression of cytoskeletal genes, and 3) GABAergic neurons revealed reduced expression of circadian rhythm genes. These data demonstrate that early translatome responses to neurodegeneration emerge prior to conventional markers of disease and are cell type-specific. Therapeutic strategies may need to target multiple pathways in specific populations of cells, early in disease
    corecore