20 research outputs found

    Tuberculosis before and after the Black Death (1346 – 1353 CE) in the Hospital of St John the Evangelist in Cambridge, England

    Get PDF
    This article was published with Open Access under the Elsevier/Jisc Open Access agreement The authors would like to thank all of the members of the ‘After the Plague’ project, and the Cambridge Archaeological Unit for their help and support. We would also like to thank György PĂĄlfi for organising the ICEPT-3 conference, at which the initial findings of this research were presented and for inviting us to contribute to this special issue. This research was funded by the Wellcome Trust (Award no 2000368/Z/15/Z) and St John's College, Cambridge.Peer reviewedPublisher PD

    Caring for the injured : Exploring the immediate and long-term consequences of injury in medieval Cambridge, England

    Get PDF
    Open Access through the Elsevier Agreement Acknowledgments The authors would like to thank Trish Biers of the Duckworth Collection at the University of Cambridge as well as the anonymous reviewers and editors of this special issue (Ileana Mircarelli, Lorna Tilley, and Mary Ann Tafuri) for their comments on this manuscript. This research was generously funded by the Wellcome Trust (Award no 2000368/Z/15/Z) and St John’s College, Cambridge.Peer reviewedPublisher PD

    An invasive Haemophilus influenzae serotype b infection in an Anglo-Saxon plague victim.

    Get PDF
    BACKGROUND: The human pathogen Haemophilus influenzae was the main cause of bacterial meningitis in children and a major cause of worldwide infant mortality before the introduction of a vaccine in the 1980s. Although the occurrence of serotype b (Hib), the most virulent type of H. influenzae, has since decreased, reports of infections with other serotypes and non-typeable strains are on the rise. While non-typeable strains have been studied in-depth, very little is known of the pathogen's evolutionary history, and no genomes dating prior to 1940 were available. RESULTS: We describe a Hib genome isolated from a 6-year-old Anglo-Saxon plague victim, from approximately 540 to 550 CE, Edix Hill, England, showing signs of invasive infection on its skeleton. We find that the genome clusters in phylogenetic division II with Hib strain NCTC8468, which also caused invasive disease. While the virulence profile of our genome was distinct, its genomic similarity to NCTC8468 points to mostly clonal evolution of the clade since the 6th century. We also reconstruct a partial Yersinia pestis genome, which is likely identical to a published first plague pandemic genome of Edix Hill. CONCLUSIONS: Our study presents the earliest genomic evidence for H. influenzae, points to the potential presence of larger genomic diversity in the phylogenetic division II serotype b clade in the past, and allows the first insights into the evolutionary history of this major human pathogen. The identification of both plague and Hib opens questions on the effect of plague in immunocompromised individuals already affected by infectious diseases

    A probable case of multiple myeloma from Bronze Age China

    No full text

    Employing radiography (X‐rays) to localize lesions in human skeletal remains from past populations to allow accurate biopsy, using examples of cancer metastases

    Get PDF
    Abstract: Clinical research into biomolecules from infectious diseases and cancers has advanced rapidly in recent years, with two key areas being DNA analysis and proteomics. If we wish to understand important diseases and their associated biomolecules in past populations, techniques are required that will allow accurate biopsy of lesions in excavated human skeletal remains. While locating lesions visible on the surface of a bone is simple, many lesions such as cancer metastases are located in the medulla of bones, unseen on visual inspection. Here, we use two novel image guided techniques to investigate how plain radiographs may improve accuracy in the localization of lesions within bones from medieval individuals. While both techniques were effective, we found the grid technique required fewer radiographs than the pointer technique to employ and so was responsible for a lower overall radiation dose. We then discuss methods available for biopsy in archeological bone and how the optimal location for the biopsy of malignant lesions will vary depending upon whether the tumor is blastic or lytic in nature. Limitations of this X‐ray guided approach include that not all cancer metastases are visible on plain radiographs, as erosion of cortical bone is frequently required for visualization of lytic metastases using this imaging modality
    corecore