43 research outputs found

    The 1.4-Å crystal structure of the S. pombe Pop2p deadenylase subunit unveils the configuration of an active enzyme

    Get PDF
    Deadenylation is the first and probably also rate-limiting step of controlled mRNA decay in eukaryotes and therefore central for the overall rate of gene expression. In yeast, the process is maintained by the mega-Dalton Ccr4-Not complex, of which both the Ccr4p and Pop2p subunits are 3′–5′ exonucleases potentially responsible for the deadenylation reaction. Here, we present the crystal structure of the Pop2p subunit from Schizosaccharomyces pombe determined to 1.4 Å resolution and show that the enzyme is a competent ribonuclease with a tunable specificity towards poly-A. In contrast to S. cerevisiae Pop2p, the S. pombe enzyme contains a fully conserved DEDDh active site, and the high resolution allows for a detailed analysis of its configuration, including divalent metal ion binding. Functional data further indicates that the identity of the ions in the active site can modulate both activity and specificity of the enzyme, and finally structural superposition of single nucleotides and poly-A oligonucleotides provide insight into the catalytic cycle of the protein

    Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics

    Get PDF
    The 30S ribosomal subunit has two primary functions in protein synthesis. It discriminates against aminoacyl transfer RNAs that do not match the codon of messenger RNA, thereby ensuring accuracy in translation of the genetic message in a process called decoding. Also, it works with the 50S subunit to move the tRNAs and associated mRNA by precisely one codon, in a process called translocation. Here we describe the functional implications of the high-resolution 30S crystal structure presented in the accompanying paper, and infer details of the interactions between the 30S subunit and its tRNA and mRNA ligands. We also describe the crystal structure of the 30S subunit complexed with the antibiotics paromomycin, streptomycin and spectinomycin, which interfere with decoding and translocation. This work reveals the structural basis for the action of these antibiotics, and leads to a model for the role of the universally conserved 16S RNA residues A1492 and A1493 in the decoding process

    The transcriptional regulator GalR self-assembles to form highly regular tubular structures

    Get PDF
    The Gal repressor regulates transport and metabolism of D-galactose in Escherichia coli and can mediate DNA loop formation by forming a bridge between adjacent or distant sites. GalR forms insoluble aggregates at lower salt concentrations in vitro, which can be solubilized at higher salt concentrations. Here, we investigate the assembly and disassembly of GalR aggregates. We find that a sharp transition from aggregates to soluble species occurs between 200 and 400 mM NaCl, incompatible with a simple salting-in effect. The aggregates are highly ordered rod-like structures, highlighting a remarkable ability for organized self-assembly. Mutant studies reveal that aggregation is dependent on two separate interfaces of GalR. The highly ordered structures dissociate to smaller aggregates in the presence of D-galactose. We propose that these self-assembled structures may constitute galactose-tolerant polymers for chromosome compaction in stationary phase cells, in effect linking self-assembly with regulatory function

    Toxin inhibition in <i>C. crescentus</i> VapBC1 is mediated by a flexible pseudo-palindromic protein motif and modulated by DNA binding

    Get PDF
    Expression of bacterial type II toxin-antitoxin (TA) systems is regulated at the transcriptional level through direct binding of the antitoxin to pseudo-palindromic sequences on operator DNA. In this context, the toxin functions as a co-repressor by stimulating DNA binding through direct interaction with the antitoxin. Here, we determine crystal structures of the complete 90 kDa heterooctameric VapBC1 complex from Caulobacter crescentus CB15 both in isolation and bound to its cognate DNA operator sequence at 1.6 and 2.7 Å resolution, respectively. DNA binding is associated with a dramatic architectural rearrangement of conserved TA interactions in which C-terminal extended structures of the antitoxin VapB1 swap positions to interlock the complex in the DNA-bound state. We further show that a pseudo-palindromic protein sequence in the antitoxin is responsible for this interaction and required for binding and inactivation of the VapC1 toxin dimer. Sequence analysis of 4127 orthologous VapB sequences reveals that such palindromic protein sequences are widespread and unique to bacterial and archaeal VapB antitoxins suggesting a general principle governing regulation of VapBC TA systems. Finally, a structure of C-terminally truncated VapB1 bound to VapC1 reveals discrete states of the TA interaction that suggest a structural basis for toxin activation in vivo

    Enzymatic and Electron Transfer Activities in Crystalline Protein Complexes

    Get PDF
    Enzymatic and electron transfer activities have been studied by polarized absorption spectroscopy in single crystals of both binary and ternary complexes of methylamine dehydrogenase (MADH) with its redox partners. Within the crystals, MADH oxidizes methylamine, and the electrons are passed from the reduced tryptophan tryptophylquinone (TTQ) cofactor to the copper of amicyanin and to the heme of cytochrome c551i via amicyanin. The equilibrium distribution of electrons among the cofactors, and the rate of heme reduction after reaction with substrate, are both dependent on pH. The presence of copper in the ternary complex is not absolutely required for electron transfer from TTQ to heme, but its presence greatly enhances the rate of electron flow to the heme

    Saccharomyces cerevisiae Ngl3p is an active 3′–5′ exonuclease with a specificity towards poly-A RNA reminiscent of cellular deadenylases

    Get PDF
    Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3′–5′ exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease–Endonuclease–Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3′–5′ exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes

    Phylogeny Reveals Novel HipA-Homologous Kinase Families and Toxin-Antitoxin Gene Organizations

    No full text
    Toxin-antitoxin modules function in the genetic stability of mobile genetic elements, bacteriophage defense, and antibiotic tolerance. A gain-of-function mutation of the Escherichia coli K-12 hipBA module can induce antibiotic tolerance in a subpopulation of bacterial cells, a phenomenon known as persistence. HipA is a Ser/Thr kinase that phosphorylates and inactivates glutamyl tRNA synthetase, inhibiting cellular translation and inducing the stringent response. Additional characterized HipA homologues include HipT from pathogenic E. coli O127 and YjjJ of E. coli K-12, which are encoded by tricistronic hipBST and monocistronic operons, respectively. The apparent diversity of HipA homologues in bacterial genomes inspired us to investigate overall phylogeny. Here, we present a comprehensive phylogenetic analysis of the Hip kinases in bacteria and archaea that expands on this diversity by revealing seven novel kinase families. Kinases of one family, encoded by monocistronic operons, consist of an N-terminal core kinase domain, a HipS-like domain, and a HIRAN (HIP116 Rad5p N-terminal) domain. HIRAN domains bind single- or double-stranded DNA ends. Moreover, five types of bicistronic kinase operons encode putative antitoxins with HipS-HIRAN, HipS, γδ-resolvase, or Stl repressor-like domains. Finally, our analysis indicates that reversion of hipBA gene order happened independently several times during evolution
    corecore