219 research outputs found

    The AIB1 glutamine repeat polymorphism is not associated with risk of breast cancer before age 40 years in Australian women

    Get PDF
    INTRODUCTION: AIB1, located at 20q12, is a member of the steroid hormone coactivator family. It contains a glutamine repeat (CAG/CAA) polymorphism at its carboxyl-terminal region that may alter the transcriptional activation of the receptor and affect susceptibility to breast cancer through altered sensitivity to hormones. METHODS: We evaluated this repeat polymorphism in the context of early-onset disease by conducting a case-control study of 432 Australian women diagnosed with breast cancer before the age of 40 years and 393 population-based control individuals who were frequency matched for age. Genotyping was performed using a scanning laser fluorescence imager. RESULTS: There were no differences in genotype frequencies between cases and control individuals, or between cases categorized by family history or by BRCA1 and BRCA2 germline mutation status. There was no evidence that the presence of one or two alleles of 26 glutamine repeats or fewer was associated with breast cancer (odds ratio = 1.03, 95% confidence interval = 0.73–1.44), or that women with alleles greater than 29 repeats were at increased risk of breast cancer. Exclusion of women who carried a BRCA1 or BRCA2 mutation (24 cases) and non-Caucasian women (44 cases) did not alter the risk estimates or inferences. We present raw data, including that on mutation carriers, to allow pooling with other studies. CONCLUSION: There was no evidence that risk of breast cancer depends on AIB1 CAG/CAA polymorphism status, even if affected women carry a mutation in BRCA1 or BRCA2

    Risk factors for breast cancer in young women by oestrogen receptor and progesterone receptor status

    Get PDF
    We used data from 765 cases and 564 controls in the population-based Australian Breast Cancer Family Study to investigate whether, in women under the age of 40, the profile of risk factors differed between breast cancer subtypes defined by joint oestrogen and progesterone receptor status. As hypothesised, no significant differences were found

    Impact of genetic variation on human CaMKK2 regulation by Ca2+ -calmodulin and multisite phosphorylation

    Get PDF
    The Ca2+-calmodulin dependent protein kinase kinase-2 (CaMKK2) is a key regulator of neuronal function and whole-body energy metabolism. Elevated CaMKK2 activity is strongly associated with prostate and hepatic cancers, whereas reduced CaMKK2 activity has been linked to schizophrenia and bipolar disease in humans. Here we report the functional effects of nine rare-variant point mutations that were detected in large-scale human genetic studies and cancer tissues, all of which occur close to two regulatory phosphorylation sites and the catalytic site on human CaMKK2. Four mutations (G87R, R139W, R142W and E268K) cause a marked decrease in Ca2+-independent autonomous activity, however S137L and P138S mutants displayed increased autonomous and Ca2+-CaM stimulated activities. Furthermore, the G87R mutant is defective in Thr85-autophosphorylation dependent autonomous activity, whereas the A329T mutation rendered CaMKK2 virtually insensitive to Ca2+-CaM stimulation. The G87R and R139W mutants behave as dominant-negative inhibitors of CaMKK2 signaling in cells as they block phosphorylation of the downstream substrate AMP-activated protein kinase (AMPK) in response to ionomycin. Our study provides insight into functionally disruptive, rare-variant mutations in human CaMKK2, which have the potential to influence risk and burden of disease associated with aberrant CaMKK2 activity in human populations carrying these variants

    The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs

    Get PDF
    AMP-activated protein kinase (AMPK) is a metabolic stress-sensing enzyme responsible for maintaining cellular energy homeostasis. Activation of AMPK by salicylate and the thienopyridone A-769662 is critically dependent on phosphorylation of Ser108 in the β1 regulatory subunit. Here, we show a possible role for Ser108 phosphorylation in cell cycle regulation and promotion of pro-survival pathways in response to energy stress. We identify the autophagy initiator Unc-51-like kinase 1 (ULK1) as a β1-Ser108 kinase in cells. Cellular β1-Ser108 phosphorylation by ULK1 was dependent on AMPK β-subunit myristoylation, metabolic stress associated with elevated AMP/ATP ratio, and the intrinsic energy sensing capacity of AMPK; features consistent with an AMP-induced myristoyl switch mechanism. We further demonstrate cellular AMPK signaling independent of activation loop Thr172 phosphorylation, providing potential insight into physiological roles for Ser108 phosphorylation. These findings uncover new mechanisms by which AMPK could potentially maintain cellular energy homeostasis independently of Thr172 phosphorylation

    Cytomegalovirus, Epstein–Barr virus and risk of breast cancer before age 40 years: a case–control study

    Get PDF
    We investigated whether there is an association between cytomegalovirus (CMV) and Epstein-Barr virus (EBV) IgG levels and risk of breast cancer before age 40 years. CMV and EBV IgG levels were measured in stored plasma from 208 women with breast cancer and 169 controls who participated in the Australian Breast Cancer Family Study (ABCFS), a population-based case-control study. CMV and EBV IgG values were measured in units of optical density (OD). Cases and controls did not differ in seropositivity for CMV (59 and 57% respectively; P=0.8) or EBV (97 and 96% respectively; P=0.7). In seropositive women, mean IgG values were higher in cases than controls for CMV (1.20 vs 0.98 OD, P=0.005) but not for EBV (2.65 vs 2.57 OD, P=0.5). The adjusted odds ratios per OD unit were 1.46 (95% CI 1.06-2.03) for CMV IgG and 1.11 (0.93-1.33) for EBV IgG. The higher mean CMV IgG levels found in women with breast cancer could be the result of a more recent infection with CMV, and may mean that late exposure to CMV is a risk factor for breast cancer

    Ellenberg-type indicator values for European vascular plant species

    Get PDF
    Aims: Ellenberg-type indicator values are expert-based rankings of plant species according to their ecological optima on main environmental gradients. Here we extend the indicator-value system proposed by Heinz Ellenberg and co-authors for Central Europe by incorporating other systems of Ellenberg-type indicator values (i.e., those using scales compatible with Ellenberg values) developed for other European regions. Our aim is to create a harmonized data set of Ellenberg-type indicator values applicable at the European scale. Methods: We collected European data sets of indicator values for vascular plants and selected 13 data sets that used the nine-, ten- or twelve-degree scales defined by Ellenberg for light, temperature, moisture, reaction, nutrients and salinity. We compared these values with the original Ellenberg values and used those that showed consistent trends in regression slope and coefficient of determination. We calculated the average value for each combination of species and indicator values from these data sets. Based on species’ co-occurrences in European vegetation plots, we also calculated new values for species that were not assigned an indicator value. Results: We provide a new data set of Ellenberg-type indicator values for 8908 European vascular plant species (8168 for light, 7400 for temperature, 8030 for moisture, 7282 for reaction, 7193 for nutrients, and 7507 for salinity), of which 398 species have been newly assigned to at least one indicator value. Conclusions: The newly introduced indicator values are compatible with the original Ellenberg values. They can be used for large-scale studies of the European flora and vegetation or for gap-filling in regional data sets. The European indicator values and the original and taxonomically harmonized regional data sets of Ellenberg-type indicator values are available in the Supporting Information and the Zenodo repository

    Morphological predictors of BRCA1 germline mutations in young women with breast cancer

    Get PDF
    BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data.METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation.RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (Po0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P 0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P 0.01). The area under the ROC curve was 0.87 (0.83-0.90).CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history. British Journal of Cancer (2011) 104, 903-909. doi: 10.1038/ bjc. 2011.41 www. bjcancer. co
    corecore