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DNA methylation-based biological 
age, genome-wide average DNA 
methylation, and conventional 
breast cancer risk factors
Minyuan Chen1,2, Ee Ming Wong3,4, Tuong L. Nguyen   1, Gillian S. Dite1, Jennifer Stone   5, 
Pierre-Antoine Dugué1,4,6, Graham G. Giles1,4,6, Melissa C. Southey3,4,6, Roger L. Milne   1,4,6, 
John L. Hopper1 & Shuai Li1,7*

DNA methylation-based biological age (DNAm age), as well as genome-wide average DNA 
methylation, have been reported to predict breast cancer risk. We aimed to investigate the associations 
between these DNA methylation-based risk factors and 18 conventional breast cancer risk factors for 
disease-free women. A sample of 479 individuals from the Australian Mammographic Density Twins 
and Sisters was used for discovery, a sample of 3354 individuals from the Melbourne Collaborative 
Cohort Study was used for replication, and meta-analyses pooling results from the two studies were 
conducted. DNAm age based on three epigenetic clocks (Hannum, Horvath and Levine) and genome-
wide average DNA methylation were calculated using the HumanMethylation 450 K BeadChip assay 
data. The DNAm age measures were positively associated with body mass index (BMI), smoking, 
alcohol drinking and age at menarche (all nominal P < 0.05). Genome-wide average DNA methylation 
was negatively associated with smoking and number of live births, and positively associated with age 
at first live birth (all nominal P < 0.05). The association of DNAm age with BMI was also evident in 
within-twin-pair analyses that control for familial factors. This study suggests that some lifestyle and 
hormonal risk factors are associated with these DNA methylation-based breast cancer risk factors, 
and the observed associations are unlikely to be due to familial confounding but are likely causal. DNA 
methylation-based risk factors could interplay with conventional risk factors in modifying breast cancer 
risk.

DNA methylation has been proposed to play an important role in the aetiology of complex traits and diseases, 
including cancer1,2. DNA methylation, especially when detected in blood, has been investigated for its associa-
tion with breast cancer risk. Peripheral blood DNA methylation at the known breast cancer susceptibility genes 
BRCA1 and ATM has been found to be associated with elevated breast cancer risk3–5. Several genome-wide studies 
of DNA methylation have reported peripheral blood DNA methylation changes associated with the risk of breast 
cancer6–10.

Two DNA methylation-based measures have been reported to be associated with breast cancer risk. One 
measure is DNA methylation-based biological age (DNAm age). Several epigenetic clocks have been devel-
oped to estimate DNAm age11, and the Hannum12 and Horvath13 clocks have received the most attention. Both 
these clocks are developed by regressing chronological age on individual methylation sites to select a set of sites 
to predict chronological age. The Levine clock14 has recently been developed by selecting a set of sites to predict 
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‘phenotypic age’, a linear combination of 10 clinical biomarkers (including chronological age) associated with 
the hazard of aging-related mortality. The difference between DNAm age and chronological age is called ‘epi-
genetic age acceleration’, which reflects the rate of biological aging. A positive value of epigenetic age acceler-
ation suggests that biological age is older than chronological age. Prospective analyses have found associations 
between accelerated DNAm ages based on the Horvath and Levine clocks and increased risk of breast cancer for 
middle-aged women14,15. Recently, a prospective study assessed DNAm age for 2,764 middle-aged women using 
DNA extracted from pre-diagnosis blood samples and found that each of the three clocks above was predictive of 
breast cancer risk: each 5-year increase in epigenetic age acceleration (calculated as the residuals from regressing 
DNAm age on chronological age and blood cell composition and thus independent of chronological age and 
blood cell composition) was associated with about a 10–15% increase in breast cancer risk16.

Another DNA methylation measure reported to be associated with breast cancer risk is a global measure, 
genome-wide average DNA methylation, defined as the average methylation value across multiple probes, com-
monly calculated from the HumanMethylation 450 K (HM450) BeadChip17,18. Two studies found that a lower 
genome-wide average DNA methylation in pre-diagnosis peripheral blood was associated with increased risk of 
breast cancer8,9. These results are consistent with previous findings that conventional global blood DNA meth-
ylation measures, such as LINE-1 and LUMA, are negatively associated with breast cancer risk19,20. However, 
this association was not observed in the Norwegian Women and Cancer Study9, the Sister Study10 or a recent 
meta-analysis of four studies21, two of which are the studies of Refs. 8 and 9. A similar measure, the median meth-
ylation value across probes, has been found to be prospectively associated with risks of mature B-cell neoplasms22, 
urothelial cell carcinoma23 and prostate cancer24.

These measures could be treated as putative DNA methylation-based breast cancer risk factors. It is unknown 
whether these DNA-methylation based risk factors and conventional risk factors modify breast cancer risk inde-
pendently or in combination. Knowing the associations between the two groups of risk factors could be helpful 
for answering this question and provide insights into breast cancer aetiology and risk prediction. As Christensen 
pointed out25: “in-depth studies of both established and putative breast cancer risk factors for their relationship 
with epigenetic age acceleration can add to our understanding of the biology underlying disease risk factors and 
present new opportunities for primary and secondary prevention of breast cancer.”

DNAm age has been investigated for its associations with lifestyle factors and some inconsistent results were 
reported11. Levine et al.26 found age at menopause was negatively associated with accelerated DNAm age based on 
the Horvath clock, opposite to the direction of the two factors’ associations with breast cancer risk. From a twin 
and family study, we found evidence that the variance in genome-wide average DNA methylation is determined 
by (unmeasured) environmental factors across the lifespan17; no specific environmental factor was investigated. 
To the best of our knowledge, associations of these DNA methylation-based risk factors with conventional breast 
cancer risk factors, such as family history or mammographic density, have not been investigated.

We therefore conducted a study with the aim of investigating associations between DNA methylation-based 
risk factors and conventional risk factors for breast cancer.

Results
Characteristics of the Australian mammographic density twins and sisters study (AMDTSS) 
sample.  Table 1 shows the distribution of the investigated risk factors for the AMDTSS sample. Our sample is 
comparable with samples from previous studies8,9,14,15 that reported on the DNA methylation-based breast cancer 
risk factors considered in this study.

The mean (SD) DNAm age based on the Hannum, Horvath and Levine clocks were 57.3 (6.4), 55.5 (6.5) and 
53.0 (7.4) years, respectively. By construction, the mean epigenetic age acceleration was zero years, and the SD 
was 4.2, 4.7 and 5.6 years, respectively. The mean (SD) percentage genome-wide average DNA methylation was 
53.0% (0.3%).

Figures 1 and 2 show the correlations between chronological age and the DNA methylation-based risk factors. 
The three DNAm age measures were correlated with each other, and each of them was correlated with chronolog-
ical age (all r > 0.61; all P < 10−15). The three epigenetic age acceleration measures were correlated with each other 
(all r > 0.62; all P < 10−15), and independent of chronological age by construction. Genome-wide average DNA 
methylation was independent of chronological age, DNAm age and epigenetic age acceleration (all P > 0.19). No 
obvious heterogeneity in the correlations across MZ twins, DZ twins and sisters was observed.

Associations between DNA methylation-based and conventional risk factors.  Table 2 shows that 
the epigenetic acceleration measures were associated with different conventional risk factors: the Hannum clock 
was negatively associated with age at first live birth, the Horvath clock was positively associated with BMI and age 
at menarche, and the Levine clock was positively associated with BMI, pack-years of smoking and alcohol drink-
ing (all nominal P < 0.05); BMI was the only risk factor associated with two epigenetic acceleration measures. 
Genome-wide average DNA methylation was negatively associated with the number of live births, and positively 
associated with age at first live birth (both nominal P < 0.05). No association was found for the other risk factors.

Similar results were found from the sensitivity analyses. For categorized BMI, positive associations were found 
for the Horvath clock: regression coefficient (β) = 1.10, 95% confidence interval (CI) = 0.03 to 2.17, P = 0.04 for 
overweight women, and β = 1.12, 95% CI = 0.08 to 2.17, P = 0.04 for obese women. As to the Levine clock, the 
association for obese women was marginally significant: β = 1.29, 95% CI = −0.01 to 2.58, P = 0.05. No associ-
ation was found for the Hannum clock or genome-wide average DNA methylation. The analyses including the 
whole sample for pack-years of smoking, number of live births, length of HRT use and length of oral contracep-
tive use gave similar results (data not shown).
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Replication and meta-analyses.  The associated risk factors found above were examined using the 
Melbourne Collaborative Cohort Study (MCCS) sample (Table 3). At the level of nominal significance (P < 0.05), 
the association between BMI and the Levine clock was replicated using both the MCCS women and men, and the 
association between pack-years of smoking and the Levine clock was replicated using the MCCS men.

The associations for the Hannum clock were not statistically significant from any of the meta-analyses, and the 
rest of the associations were found to be nominally significant in at least one of the meta-analyses, with the excep-
tion that the association between number of live births and genome-wide average DNA methylation was margin-
ally significant (P = 0.07). Smoking status was associated with the greatest number of DNA methylation-based 
risk factors investigated: the Horvath clock, Levine clock and genome-wide average DNA methylation.

No evidence of heterogeneity by sex was found for any association, except for the association between smok-
ing status and the Horvath clock (P = 0.04). Note that this association was also significant in the meta-analysis 
when including women only.

Within-twin-pair associations.  The associated risk factors found above were examined using 
within-twin-pair analyses (Table 4). For all twin pairs, there was evidence of a within-twin-pair association 
between the Horvath clock and BMI. There was no evidence of within-twin-pair association heterogeneity 
between MZ and DZ pairs (all P > 0.05).

Discussion
Using a sample of unaffected women comparable with those in the previous studies3,7,11,13 which have reported 
that DNAm age and genome-wide average DNA methylation are predictive of breast cancer risk, we investigated 
the associations between these DNA methylation-based risk factors and multiple conventional breast cancer risk 
factors. We further conducted replication and meta-analyses using independent and homogenous samples, as 
well as within-twin-pair analyses that control for familial confounding. We found that DNAm age was associated 

Characteristics Monozygotic twins Dizygotic twins Sisters

Approximately normal variables, mean (standard deviation)

   Age (years) 55.6 (8.4) 57 (7.2) 56.6 (8.0)

   DNAm age (years)

      Hannum clock 56.3 (6.3) 58.4 (5.9) 57.2 (6.6)

      Horvath clock 54.8 (6.7) 56.5 (6.0) 55.5 (6.5)

      Levine clock 52.1 (6.9) 53.6 (7.2) 53.2 (7.7)

   Epigenetic age acceleration (years)

      Hannum clock −0.5 (3.9) 0.7 (4.2) −0.1 (4.4)

      Horvath clock −0.4 (4.4) 0.6 (4.8) −0.1 (4.9)

      Levine clock −0.4 (4.8) 0.2 (5.9) 0.1 (5.8)

   Genome-wide average DNA methylation (percentage) 53.0 (0.3) 53.0 (0.3) 53.0 (0.3)

   Age at menarche (years) 13.0 (1.3) 12.9 (1.5) 13.0 (1.5)

   Age at menopause (years)a 47.0 (5.9) 45.8 (6.3) 45.8 (6.0)

   Age at first live birth (years)b 25.1 (5.3) 25.0 (4.7) 24.7 (4.8)

Skewed variables, median (inter-quartile range)

   Body mass index 24.7 (22.7–30.0) 26.4 (23.0–29.1) 25.7 (23.0–30.1)

   Pack-years of smokingc 9.0 (3.6–21.2) 7.0 (2.0–14.3) 5.0 (1.9–13.4)

   Number of live birthsb 3.0 (2.0–3.3) 3.0 (2.0–4.0) 3.0 (2.0–4.0)

   Years of hormonal replacement therapy used 2.0 (0.8–6.3) 4.8 (1.3–10.8) 3.4 (1.2–7.0)

   Years of oral contraceptive usee 5.0 (2.0–9.5) 5.0 (2.0–10.0) 5.0 (1.8–11.7)

   Mammographic densityf

     Dense area 26.4 (6.6–46.7) 26.5 (7.9–46.3) 25.7 (12.4–44.9)

     Non-dense area 109.0 (66.8–142.2) 94.7 (63.0–136.5) 98.0 (68.6–148.5)

     Percentage dense area 19.4 (4.2–41.8) 23.0 (7.3–39.8) 21.5 (9.9–37.7)

   Binary variables, N (%)

     Smoking 49 (37.1%) 47 (35.6%) 92 (42.8%)

     Alcohol drinking 77 (58.3%) 80 (60.6%) 130 (60.5%)

     Post-menopausal 81 (61.4%) 102 (77.3%) 145 (67.4%)

     Parous 116 (87.9%) 117 (88.6%) 198 (92.1%)

     Hormonal replacement therapy use 43 (32.6%) 58 (43.9%) 85 (39.5%)

     Oral contraceptive use 106 (80.3%) 111 (84.1%) 183 (85.1%)

     Family history 32 (24.2%) 14 (10.6%) 45 (20.9%)

Table 1.  Characteristics of the study sample. aFor post-menopausal women; bFor parous women; cFor ever 
smokers; dFor hormonal replacement therapy users; eFor oral contraceptive users; fSample sizes were 122, 123 
and 190 for monozygotic twins, dizygotic twins and sisters, respectively.
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with lifestyle factors (BMI, smoking and alcohol drinking) and hormonal factors (age at menarche), while 
genome-wide average DNA methylation was associated with hormonal factors (number of live births and age at 
first live birth) and smoking. We also found evidence that the association of DNAm age with BMI remained after 
controlling for familial factors shared by twins.

Following our previous finding that the variance in genome-wide average DNA methylation is determined to a 
large extent by as yet unmeasured environmental factors across the human lifespan, including non-genetic factors 
shared by relatives17, here we found that smoking, number of live births and age at first live birth were associated 
with this summary measure of DNA methylation across the genome. To the best of our knowledge, our study is 

Figure 1.  Correlation of chronological age with DNAm age.
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the first to report that genome-wide average DNA methylation is associated with these three conventional risk 
factors.

Similar to previous studies14,27–30, we also found DNAm age was positively associated with lifestyle risk fac-
tors including BMI, smoking and alcohol drinking. This suggests that some lifestyle factors accelerate biological 
ageing, consistent with both DNAm age and those lifestyle factors being associated with an increased risk of 
breast cancer. We found that the Levine clock was associated with more lifestyle factors than the other two clocks. 
Similar findings have arisen from previous studies; see Table 1 of Horvath et al.31 Interestingly, the Levine clock 
was found to be most strongly associated with breast cancer risk16. These differences might be due to differences 
in the development of these clocks; the Horvath and Hannum clocks are trained on chronological age12,13, while 

Figure 2.  Correlations of genome-wide average DNA methylation with chronological ages and DNAm age.
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the Levine clock is trained on the ‘phenotypic age’ which in addition to chronological age also considers nine 
other health-related factors, so is theoretically more relevant to health14.

We found that DNAm age was associated with hormonal risk factors, as has been previously found26,32. Binder 
and colleagues found a negative association between the Horvath clock and age at menarche32, which is in the 
opposite direction of our observed association. One difference between the two studies is that Binder et al. stud-
ied adolescent girls while we studied older women. Note that the point estimates for the associations of age at 
menarche and the other two clocks were also positive, providing some more evidence about the direction of 
association between DNAm age and age at menarche for older women.

Results from the within-twin-pair analyses suggest that our observed association of the Horvath clock with 
BMI is unlikely to be due to confounding due to familial factors shared by twins, because such potentially con-
founding effects are cancelled out when using a regression analysis of within-twin-pair differences. In this sense, 
this association is more likely to be causal. We did not find evidence for genetic confounders, given that the 
within-twin-pair association was similar for MZ and DZ twin pairs. The null results for the other within-twin-pair 
associations do not necessarily imply that the associations observed in Tables 2 and 3 are due to familial con-
founding. Note that, the confidence interval of the within-twin-pair association in Table 4 contained the point 
estimate of the corresponding association in Tables 2 and 3, suggesting that the associations tend to be alike, and 
the lack of statistical significance in the within-twin-pair analyses is possibly a result of insufficient sample size.

Our findings imply that DNA methylation-based risk factors potentially interplay with their associ-
ated conventional risk factors in modifying breast cancer risk. Such interplay may be the due to the DNA 
methylation-based risk factors mediating the associations between conventional risk factors and cancer risk, or 
other mechanisms. Studies with appropriate data, design and analytic methods are required to further investigate 
the interrelationships between DNA methylation-based risk factors, conventional risk factors and breast cancer 
risk. Findings from such studies could provide novel insights on the aetiology, early detection and prevention of 
breast cancer.

The strengths of our study include: (1) using samples comparable with those used in studies that reported the 
DNA methylation-based risk factors, (2) investigating a comprehensive list of conventional breast cancer risk 
factors, which notably includes family history and mammographic density, and (3) using a sample for discovery 
and homogenous samples for replication analyses, as well as conducting a meta-analysis to take advantage of the 
increased sample size. One potential limitation is that no multiple testing adjustment was performed; our results 
must of course be interpreted with this in mind.

In conclusion, our study found evidence that the lifestyle risk factors BMI, smoking and alcohol drinking, 
and the hormonal breast cancer risk factors age at menarche, age at first live birth and number of liver births, 
are associated with the DNA methylation-based biological age and global DNA methylation. We also found evi-
dence that the observed associations are unlikely to be due to familial confounding but are likely causal. DNA 

Conventional risk factors

Hannum clock Horvath clock Levine clock
Genome-wide average
DNA methylation

β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI)a P

Body mass index (n = 479) 1.51 (−0.72, 3.75) 0.18 2.35 (0.05, 4.66) 0.05 3.12 (0.37, 5.86) 0.03 −0.06 (−0.20, 0.07) 0.38

Ever smoking (n = 479) −0.41 (−1.21, 0.40) 0.32 0.28 (−0.64, 1.20) 0.55 0.45 (−0.60, 1.51) 0.40 −0.03 (−0.09, 0.02) 0.20

Pack-years of smoking (n = 188) 0.21 (−0.12, 0.54) 0.21 0.12 (−0.35, 0.59) 0.61 0.72 (0.27, 1.16) 0.002 0.003 (−0.03, 0.03) 0.86

Ever alcohol drinking (n = 287) 0.12 (−0.67, 0.91) 0.76 0.81 (−0.17, 1.79) 0.11 1.21 (0.18, 2.25) 0.02 −0.01 (−0.07, 0.04) 0.65

Age at menarche (n = 479) 0.13 (−0.11, 0.38) 0.28 0.31 (0.01, 0.61) 0.04 0.23 (−0.10, 0.57) 0.16 0.01 (−0.01, 0.03) 0.24

Post-menopausal (n = 479) 0.73 (−0.61, 2.07) 0.28 −0.49 (−1.77, 0.79) 0.45 −0.29 (−1.77, 1.20) 0.71 0.06 (−0.02, 0.14) 0.18

Age at menopause (n = 328) −0.03 (−0.10, 0.05) 0.44 −0.05 (−0.14, 0.04) 0.29 −0.05 (−0.16, 0.07) 0.42 0.001 (−0.01, 0.01) 0.75

Parity (parous; n = 479) −0.38 (−1.87, 1.10) 0.61 −0.57 (−2.06, 0.92) 0.46 −0.15 (−2.08, 1.79) 0.88 0.04 (−0.04, 0.12) 0.35

Number of live births (n = 431) 0.25 (−0.62, 1.13) 0.57 0.04 (−1.19, 1.27) 0.95 0.15 (−1.03, 1.33) 0.81 −0.08 (−0.14, −0.02) 0.01

Age at first live birth (n = 431) −0.10 (−0.20, −0.01) 0.03 −0.07 (−0.18, 0.04) 0.18 −0.10 (−0.22, 0.02) 0.11 0.01 (0.001, 0.014) 0.02

Ever HRT use (n = 479) 0.53 (−0.37, 1.44) 0.25 −0.04 (−0.98, 0.89) 0.93 0.20 (−0.93, 1.33) 0.73 0.03 (−0.03, 0.09) 0.27

Years of HRT use (n = 186) 0.34 (−0.11, 0.79) 0.14 0.21 (−0.35, 0.78) 0.46 0.49 (−0.13, 1.10) 0.12 −0.002 (−0.03, 0.03) 0.90

Ever oral contraceptive use (n = 479) −0.95 (−2.01, 0.10) 0.08 0.17 (−0.95, 1.30) 0.76 −0.48 (−1.83, 0.86) 0.48 −0.03 (−0.09, 0.04) 0.39

Years of oral contraceptive use (n = 400) −0.19 (−0.52, 0.13) 0.25 −0.05 (−0.43, 0.34) 0.80 −0.09 (−0.51, 0.33) 0.68 −0.02 (−0.04, 0.004) 0.12

Having family history (n = 479) 0.04 (−1.23, 1.31) 0.95 0.36 (−1.02, 1.74) 0.61 0.28 (−1.27, 1.83) 0.72 0.03 (−0.02, 0.09) 0.25

Mammographic dense area (n = 435) 0.14 (−0.76, 1.04) 0.75 −0.01 (−0.99, 0.96) 0.98 0.62 (−0.45, 1.68) 0.26 −0.02 (−0.07, 0.03) 0.38

Mammographic non-dense area (n = 435) −1.16 (−2.42, 0.10) 0.07 −1.03 (−2.33, 0.27) 0.12 −0.98 (−2.41, 0.45) 0.18 0.06 (−0.03, 0.15) 0.20

Mammographic percentage dense area (n = 435) 0.14 (−0.27, 0.55) 0.51 0.06 (−0.39, 0.51) 0.80 0.31 (−0.18, 0.80) 0.22 −0.02 (−0.04, 0.01) 0.21

Table 2.  Association estimates between epigenetic age acceleration, genome-wide average DNA methylation 
and conventional breast cancer risk factors β: Regression coefficient; CI: confidence interval; HRT: hormonal 
replacement therapy. The analysis for epigenetic age acceleration was adjusted for age, BMI and smoking status, 
and the analysis for genome-wide average DNA methylation was adjusted for age, BMI, smoking status and 
blood cell composition. aValue are reported as percentage methylation.
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methylation-based risk factors could interplay with conventional risk factors to modify breast cancer risk. Such 
interplay requires further investigation.

Methods
Study sample for discovery.  The sample was participants from the Australian Mammographic Density 
Twins and Sisters Study (AMDTSS)33, which was approved by Human Research Ethics Committee at the 
University of Melbourne in accordance with the Declaration of Helsinki. All participants provided written 
informed consent. The analytical sample included 479 women from 130 families: 66 monozygotic twin (MZ) 
pairs, 66 dizygotic twin (DZ) pairs and 215 sisters of twins34. They were aged from 40–78 years and had a mean 
(standard deviation [SD]) age of 55.7 (8.0) years. All women were healthy and none had been diagnosed with 
breast cancer when recruited.

DNAm age and genome-wide average DNA methylation.  Methylation of DNA extracted from dried 
peripheral blood spots was measured using the HM450 assay. Data were normalized using Illumina’s reference 
factor-based normalization methods and subset-quantile within array normalization35 for type I and II probe bias 
correction, and an empirical Bayes batch effects removal method, ComBat36, was applied to minimise technical 
variation across physical batches; see Li et al.34 for more details.

DNAm age was calculated based on each of the Hannum, Horvath and Levine clocks, using the online calcu-
lator (https://dnamage.genetics.ucla.edu). As done previously16, we investigated epigenetic age acceleration, cal-
culated as the residuals from regressing DNAm age on chronological age and blood cell composition. Therefore, 
epigenetic age acceleration was independent of chronological age and blood cell composition. Blood cell com-
position (CD8 + T-cells, CD4 + T-cells, natural killer cells, B-cells, monocytes and granulocytes) was estimated 
using the Houseman method37 implemented in the minfi package and Reinius et al.38 as reference. Genome-wide 
average DNA methylation was calculated as the average methylation beta-value across all autosomal probes that 
passed quality control.

Conventional breast cancer risk factors.  We studied multiple conventional breast cancer risk factors, 
including lifestyle factors, hormonal factors, family history and mammographic density (Table 1). All risk fac-
tors except mammographic density were collected via telephone-administered questionnaire survey. Lifestyle 
factors included body mass index (BMI), smoking status, smoking intensity measured as pack-years and alco-
hol drinking. Hormonal factors included age at menarche, parity, number of live births, age at first live birth, 
oral contraceptive use, length of oral contraceptive use in years, menopausal status, age at menopause, hormo-
nal replacement therapy (HRT) use and duration of HRT use in years. Family history was defined as having 
at least one first-degree relative diagnosed with breast cancer. Mammographic density was measured using 
the computer-assisted thresholding technique, CUMULUS (Imaging Research Program, Sunnybrook Health 
Sciences Centre, University of Toronto, Toronto, Canada), at the conventional brightness threshold. We studied 
three measures: dense area, non-dense area and percentage dense area. Details of the measurement can be found 
in Odefrey et al.33 435 women had mammographic density data available.

Associations

MCCS women MCCS men AMDTSS + MCCS women
AMDTSS + MCCS 
women + MCCS men

β (95% CI) P β (95% CI) P β (95% CI) P β (95% CI)a P

Hannum clock

    Age at first live birth −0.01 (−0.08, 0.06) 0.79 −0.04 (−0.10, 0.01) 0.14

    Ever smoking 0.41 (−0.20, 1.02) 0.19 0.16 (−0.34, 0.65) 0.53 0.11 (−0.37, 0.60) 0.65 0.08 (−0.28, 0.45) 0.66

Horvath clock

    Body mass index 1.51 (−0.41, 3.43) 0.12 1.37 (−0.68, 3.41) 0.19 1.86 (0.38, 3.33) 0.01 1.69 (0.49, 2.89) 5.6E-03

    Age at menarche 0.13 (−0.08, 0.33) 0.23 0.18 (0.02, 0.35) 0.03

    Ever smoking 1.03 (0.36, 1.71) 2.8E-03 0.20 (−0.35, 0.74) 0.48 0.77 (0.22, 1.31) 5.8E-03 0.48 (0.10, 0.86) 0.01

Levine clock

    Body mass index 3.03 (0.57, 5.48) 0.02 4.80 (2.27, 7.34) 2.1E-04 3.07 (1.24, 4.90) 1.0E-03 3.66 (2.18, 5.15) 1.3E-06

    Pack-years of smoking 0.28 (−0.26, 0.81) 0.31 0.69 (0.33, 1.04) 1.4E-04 0.54 (0.20, 0.88) 2.1E-03 0.61 (0.36, 0.86) 1.2E-06

    Alcohol drinking 0.09 (−0.75, 0.93) 0.84 0.75 (−0.17, 1.66) 0.11 0.54 (−0.12, 1.19) 0.11 0.61 (0.08, 1.14) 0.02

    Ever smoking 1.22 (0.34, 2.11) 6.9E-03 1.21 (0.54, 1.88) 4.2E-04 0.90 (0.25, 1.58) 0.01 1.06 (0.58, 1.54) 1.4E-05

Genome-wide average DNA methylationa

    Number of live births 0.03 (−0.07, 0.12) 0.56 −0.05 (−0.10, 0.004) 0.07

    Age at first live birth 0.001 (−0.01, 0.01) 0.85 0.01 (0.00, 0.01) 0.04

    Ever smoking −0.06 (−0.14, 0.03) 0.19 −0.04 (−0.09, 0.004) 0.08 −0.04 (−0.09, 0.02) 0.20 −0.04 (−0.07, −0.01) 0.03

Table 3.  Association estimates between DNA methylation-based risk factors and conventional risk factors 
from the MCCS and meta-analysis. β: Regression coefficient; CI: confidence interval. aValues are reported as 
percentage methylation.
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Statistical analysis.  Correlations between DNA methylation-based risk factors and chronological age were 
assessed using Pearson’s correlation coefficient. We investigated the association of each DNA methylation-based 
risk factor (the three epigenetic age acceleration measures and genome-wide average DNA methylation) with 
the conventional risk factors separately using a linear regression model, in which the DNA methylation-based 
risk factor was the dependent variable and the conventional risk factor was the independent variable. To account 
for the relatedness between family members, the regression model was fitted using the Generalised Estimating 
Equations method with family as cluster. The model was adjusted for age, BMI, smoking status and blood cell 
composition, with the exception that blood cell composition was dropped from the model investigating epige-
netic age acceleration, since epigenetic age acceleration is independent of cell composition by construction. A 
P-value of 0.05 was used to define nominal statistical significance. All statistical tests were two-sided.

Mammographic dense, non-dense and percentage dense areas were power-transformed with powers of 0.25, 
0.25, 0.4, respectively, and the other right-skewed continuous risk factors (BMI, pack-years of smoking, number 
of live births, and durations of HRT and oral contraceptive use) were log transformed, to have an approximately 
normal distribution. The analyses for pack-years of smoking, age at menopause, number of live births, age at first 
live birth, length of HRT use and length of oral contraceptive use, were restricted to participants who were ever 
smokers, post-menopausal, parous, ever HRT users and ever oral contraceptive users, as appropriate.

Sensitivity analysis.  BMI was analysed as a categorical variable: normal (BMI < 25; 217 women; used as the 
reference group), overweight (25 ≤ BMI < 30; 146 women) and obese (BMI ≥ 30; 116 women). The analyses for 
pack-years of smoking, number of live births, length of HRT use and length of oral contraceptive use included 
non-smokers, nulliparous women, HRT non-users and oral contraceptive non-users as well, for whom the corre-
sponding variable was treated as zero and added by one in log transformation.

Replication and meta-analysis.  For the associations with a nominal P < 0.05, we performed replication 
analyses using the data of participants (1,350 women, 2,004 men) from the Melbourne Collaborative Cohort 
Study (MCCS)39. The participants were the controls from case-control studies of several cancers nested in the 
MCCS. Same as those in the AMDTSS, DNA samples were extracted from peripheral blood, DNA methylation 
data were measured using the HM450 assay and normalized using Illumina’s reference factor-based normaliza-
tion methods and subset-quantile within array normalization; see Dugue et al.23,27 for more details.

The association was investigated using the same linear regression model. Additional to the covariates used in 
the AMDTSS analysis, country of birth (Australia/New Zealand, United Kingdom/Malta, Italy, or Greece) and 
sample type (dried blood spot, peripheral blood mononuclear cells, or buffy coat) were adjusted for, all fitted as 
fixed-effects. Batch effects were minimized by fitting study and the plate on which the sample was processed as 
random effects. We also investigated the associations between smoking status and DNA methylation-based risk 
factors. The analysis was stratified by sex. The heterogeneity in the association by sex was investigated by fitting an 
interaction term of the risk factor with sex in the regression model for the whole sample.

Taking advantage of the homogeneity between the two samples40, results from the two studies were pooled via 
a fixed-effect meta-analysis, using the generic inverse variance method. Two meta-analyses were performed: (1) 
AMDTSS sample and MCCS women, and (2) AMDTSS sample, MCCS women and MCCS men.

Within-twin-pair analysis.  Taking advantage of our sample including twin pairs, we performed 
within-twin-pair analyses to investigate the associations after controlling for the confounding effects of familial 

Associationsa

All twin pairs Monozygotic twin pairs Dizygotic twin pairs P for 
heterogeneityβ (95% CI) P β (95% CI) P β (95% CI) P

Horvath clock

    Body mass index 6.26 (1.65, 10.87) 8.8E-03 5.92 (−0.79, 12.62) 0.09 6.48 (−0.01, 12.97) 0.05 0.87

    Age at menarche 0.24 (−0.40, 0.87) 0.47 0.25 (−0.86, 1.36) 0.66 0.23 (−0.60, 1.07) 0.59 0.72

    Ever smoking 1.09 (−0.53, 2.72) 0.19 0.89 (−1.25, 3.03) 0.42 1.27 (−1.19, 3.73) 0.32 0.95

Levine clock

    Body mass index 4.70 (−0.76, 10.15) 0.09 4.65 (−3.33, 12.62) 0.26 4.81 (−2.85, 12.47) 0.22 0.84

    Pack-years of smoking 0.61 (−0.60, 1.81) 0.33 0.41 (−1.03, 1.84) 0.59 0.87 (−1.47, 3.20) 0.49 0.69

    Alcohol drinking 0.50 (−1.50, 2.50) 0.63 0.31 (−2.61, 3.23) 0.83 0.61 (−2.23, 3.45) 0.68 0.92

    Ever smoking 1.21 (−0.72, 3.14) 0.22 0.70 (−1.84, 3.25) 0.59 1.63 (−1.27, 4.54) 0.27 0.84

Genome-wide average DNA methylationb

    Number of live births 0.01 (−0.13, 0.14) 0.93 0.01 (−0.20, 0.22) 0.94 −0.001 (−0.21, 0.20) 0.99 0.80

    Age at first live birth −0.001 (−0.01, 0.01) 0.96 0.001 (−0.02, 0.02) 0.82 −0.01 (−0.02, 0.01) 0.46 0.53

    Ever smoking −0.05 (−0.14, 0.04) 0.28 0.01 (−0.13, 0.14) 0.93 −0.10 (−0.23, 0.03) 0.14 0.26

Table 4.  Within-twin-pair association estimates between DNA methylation-based risk factors and 
conventional risk factors. aThe number of pairs included in the analysis for all twin pairs, monozygotic twin 
pairs and dizygotic twin pairs was 105, 53 and 52 for age at first live birth, 132, 66 and 66 for body mass index, 
age at menarche, smoking and alcohol drinking, 26, 15 and 11 for pack-years of smoking, and 105, 52 and 52 for 
number of live births; bValues are reported as percentage methylation.
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factors (both known and unknown) shared by twins. Within-twin-pair differences in the DNA methylation-based 
risk factors, conventional risk factors and covariates were calculated, and used to estimate their within-twin-pair 
associations using an ordinary linear regression model without an intercept41. The within-twin-pair analyses 
were performed separately for all twin pairs, MZ pairs and DZ pairs. We investigated the heterogeneity in the 
within-twin-pair association by zygosity by fitting an interaction term of the risk factor with zygosity in the 
regression model for all twin pairs.

Data availability
The DNA methylation dataset of the AMDTSS can be accessed on Gene Expression Omnibus with the number 
GSE100227.
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