2,364 research outputs found

    Sensitivity of the NEMO telescope to neutrinos from microquasars

    Get PDF
    We present the results of Monte Carlo simulation studies of the capability of the proposed NEMO telescope to detect TeV muon neutrinos from Galactic microquasars. In particular we determined the number of the detectable events from each known microquasar together with the expected atmospheric neutrino and muon background events. We also discuss the detector sensitivity to neutrino fluxes expected from microquasars, optimizing the event selection in order to reject the atmospheric background, and we show the number of events surviving the event selection.Comment: To be published on CRIS06 proceedings (Catania, Italy, May 29 - June 2, 2006

    Evidence of radius inflation in stars approaching the slow-rotator sequence

    Get PDF
    Average stellar radii in open clusters can be estimated from rotation periods and projected rotational velocities under the assumption of random orientation of the spin axis. Such estimates are independent of distance, interstellar absorption, and models, but their validity can be limited by missing data (truncation) or data that only represent upper/lower limits (censoring). We present a new statistical analysis method to estimate average stellar radii in the presence of censoring and truncation. We use theoretical distribution functions of the projected stellar radius RsiniR \sin i to define a likelihood function in the presence of censoring and truncation. Average stellar radii in magnitude bins are then obtained by a maximum likelihood parametric estimation procedure. This method is capable of recovering the average stellar radius within a few percent with as few as \approx 10 measurements. Here it is applied for the first time to the dataset available for the Pleiades. We find an agreement better than \approx 10 percent between the observed RR vs MKM_K relationship and current standard stellar models for 1.2 M/M\ge M/M_{\odot} \ge 0.85 with no evident bias. Evidence of a systematic deviation at 2σ2\sigma level are found for stars with 0.8 M/M\ge M/M_{\odot} \ge 0.6 approaching the slow-rotator sequence. Fast-rotators (PP < 2 d) agree with standard models within 15 percent with no systematic deviations in the whole 1.2 M/M\ge M/M_{\odot} \ge 0.5 range. The evidence found of a possible radius inflation just below the lower mass limit of the slow-rotator sequence indicates a possible connection with the transition from the fast to the slow-rotator sequence.Comment: Accepted by Astronomy and Astrophysics, 11 pages, 6 figure

    A compositional method for reliability analysis of workflows affected by multiple failure modes

    Get PDF
    We focus on reliability analysis for systems designed as workflow based compositions of components. Components are characterized by their failure profiles, which take into account possible multiple failure modes. A compositional calculus is provided to evaluate the failure profile of a composite system, given failure profiles of the components. The calculus is described as a syntax-driven procedure that synthesizes a workflows failure profile. The method is viewed as a design-time aid that can help software engineers reason about systems reliability in the early stage of development. A simple case study is presented to illustrate the proposed approach

    Metal chloride cathode for a battery

    Get PDF
    A method of fabricating a rechargeable battery is disclosed which includes a positive electrode which contains a chloride of a selected metal when the electrode is in its active state. The improvement comprises fabricating the positive electrode by: providing a porous matrix composed of a metal; providing a solution of the chloride of the selected metal; and impregnating the matrix with the chloride from the solution

    Sensitivity and pointing accuracy of the NEMO km3^3 telescope

    Get PDF
    n this paper we present the results of Monte Carlo simulation studies on the capability of the proposed NEMO km3 telescope to detect high energy neutrinos. We calculated the detector sensitivity to muon neutrinos coming from a generic point-like source. We also simulated the lack of atmospheric muons in correspondence to the Moon disk in order to determine the detector angular resolution and to check the absolute pointing capability.Comment: To be published on VLVNT2 proceedings (Catania, Italy, November 8-11, 2005

    Advanced rechargeable sodium batteries with novel cathodes

    Get PDF
    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE)

    Evidence of New Magnetic Transitions in Late-Type Dwarfs from Gaia DR2

    Get PDF
    The second Gaia data release contains the identification of 147 535 low-mass (1.4M\le 1.4 M_{\odot}) rotational modulation variable candidates on (or close to) the main sequence, together with their rotation period and modulation amplitude. The richness, the period and amplitude range, and the photometric precision of this sample make it possible to unveil, for the first time, signatures of different surface inhomogeneity regimes in the amplitude-period density diagram. The modulation amplitude distribution shows a clear bimodality, with an evident gap at periods P2P \le 2 d. The low amplitude branch, in turn, shows a period bimodality with a main clustering at periods PP \approx 5 - 10 d and a secondary clustering of ultra-fast rotators at P0.5P \le 0.5 d. The amplitude-period multimodality is correlated with the position in the period-absolute magnitude (or period-color) diagram, with the low- and high-amplitude stars occupying different preferential locations. Here we argue that such a multimodality represents a further evidence of the existence of different regimes of surface inhomogeneities in young and middle-age low-mass stars and we lay out possible scenarios for their evolution, which manifestly include rapid transitions from one regime to another. In particular, the data indicate that stars spinning up close to break-up velocity undergo a very rapid change in their surface inhomogeneities configuration, which is revealed here for the first time. The multimodality can be exploited to identify field stars of age \sim 100 -- 600 Myr belonging to the slow-rotator low-amplitude sequence, for which age can be estimated from the rotation period via gyrochronology relationships.Comment: 15 pages, 6 figures, Accepted by Ap

    Neutrino flux predictions for known Galactic microquasars

    Get PDF
    It has been proposed recently that Galactic microquasars may be prodigious emitters of TeV neutrinos that can be detected by upcoming km^2 neutrino telescopes. In this paper we consider a sample of identified microquasars and microquasar candiates, for which available data enables rough determination of the jet parameters. By employing the parameters inferred from radio observations of various jet ejection events, we determine the neutrino fluxes that should have been produced during these events by photopion production in the jet. Despite the large uncertainties in our analysis, we demonstrate that in several of the sources considered, the neutrino flux at Earth, produced in events similar to those observed, would exceed the detection threshold of a km^2 neutrino detector. The class of microquasars may contain also sources with bulk Lorentz factors larger than those characteristic of the sample considered here, directed along our line of sight. Such sources, which may be very difficult to resolve at radio wavelengths and hence may be difficult to identify as microqusar candidates, may emit neutrinos with fluxes significantly larger than typically obtained in the present analysis. These sources may eventually be identified through their neutrino and gamma-ray emission.Comment: 17 pages. Submitted to Ap

    Activity cycles in members of young loose stellar associations

    Get PDF
    Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length PcycP_{ cyc} of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between PcycP_{ cyc} and ProtP_{ rot} suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient rSr_{ S} between PcycP_{ cyc}, and different stellar parameters. We found that PcycP_{ cyc} is uncorrelated with all the investigated parameters. The index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale τdiff\tau_{ diff}, and the dynamo number DND_{ N}, whereas it is anti-correlated with the effective temperature TeffT_{ eff}, the photometric shear ΔΩphot\Delta\Omega_{\rm phot} and the radius RCR_{ C} at which the convective zone is located. We found that PcycP_{ cyc} is about constant and that decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as Pcyc=16.78±2yrP_{ cyc} = 16.78 \pm 2 \rm yr.Comment: 19 pages , 15 figures, accepte
    corecore