20 research outputs found

    Coronal response to an EUV wave from DEM analysis

    Full text link
    EUV (Extreme-Ultraviolet) waves are globally propagating disturbances that have been observed since the era of the SoHO/EIT instrument. Although the kinematics of the wave front and secondary wave components have been widely studied, there is not much known about the generation and plasma properties of the wave. In this paper we discuss the effect of an EUV wave on the local plasma as it passes through the corona. We studied the EUV wave, generated during the 2011 February 15 X-class flare/CME event, using Differential Emission Measure diagnostics. We analyzed regions on the path of the EUV wave and investigated the local density and temperature changes. From our study we have quantitatively confirmed previous results that during wave passage the plasma visible in the Atmospheric Imaging Assembly (AIA) 171A channel is getting heated to higher temperatures corresponding to AIA 193A and 211A channels. We have calculated an increase of 6 - 9% in density and 5 - 6% in temperature during the passage of the EUV wave. We have compared the variation in temperature with the adiabatic relationship and have quantitatively demonstrated the phenomenon of heating due to adiabatic compression at the wave front. However, the cooling phase does not follow adiabatic relaxation but shows slow decay indicating slow energy release being triggered by the wave passage. We have also identified that heating is taking place at the front of the wave pulse rather than at the rear. Our results provide support for the case that the event under study here is a compressive fast-mode wave or a shock.Comment: Accepted for publication in Ap

    An acoustically-driven biochip: particle-cell interactions under physiological flow conditions [Abstract]

    Get PDF
    Introduction: The interaction of particulate drug carriers with cells has generally been assessed in stationary microplate assays. These setups fail to reflect the flow conditions in vivo which generate substantial hydrodynamic drag forces [1]. In order to address this shortcoming, a microfluidic biochip with the capability of imitating a wide range of shear rates and pulsation modes has been developed. This device, which is based on an incorporated surface acoustic wave pump, was used to study the interaction of targeted microparticles with epithelial cells under flow conditions

    Small Platforms, High Return: The Need to Enhance Investment in Small Satellites for Focused Science, Career Development, and Improved Equity

    Full text link
    In the next decade, there is an opportunity for very high return on investment of relatively small budgets by elevating the priority of smallsat funding in heliophysics. We've learned in the past decade that these missions perform exceptionally well by traditional metrics, e.g., papers/year/\$M (Spence et al. 2022 -- arXiv:2206.02968). It is also well established that there is a "leaky pipeline" resulting in too little diversity in leadership positions (see the National Academies Report at https://www.nationalacademies.org/our-work/increasing-diversity-in-the-leadership-of-competed-space-missions). Prioritizing smallsat funding would significantly increase the number of opportunities for new leaders to learn -- a crucial patch for the pipeline and an essential phase of career development. At present, however, there are far more proposers than the available funding can support, leading to selection ratios that can be as low as 6% -- in the bottom 0.5th percentile of selection ratios across the history of ROSES. Prioritizing SmallSat funding and substantially increasing that selection ratio are the fundamental recommendations being made by this white paper.Comment: White paper submitted to the Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033; 6 pages, 1 figur

    Using radio triangulation to understand the origin of two subsequent type II radio bursts

    Get PDF
    Context. Eruptive events such as coronal mass ejections (CMEs) and flares accelerate particles and generate shock waves which can arrive at Earth and can disturb the magnetosphere. Understanding the association between CMEs and CME-driven shocks is therefore highly important for space weather studies. Aims. We present a study of the CME/flare event associated with two type II bursts observed on September 27, 2012. The aim of the study is to understand the relationship between the observed CME and the two distinct shock wave signatures. Methods. The multiwavelength study of the eruptive event (CME/flare) was complemented with radio triangulation of the associated radio emission and modelling of the CME and the shock wave employing MHD simulations. Results. We found that, although temporal association between the type II bursts and the CME is good, the low-frequency type II (LF-type II) burst occurs significantly higher in the corona than the CME and its relationship to the CME is not straightforward. The analysis of the EIT wave (coronal bright front) shows the fastest wave component to be in the southeast quadrant of the Sun. This is also the quadrant in which the source positions of the LF-type II were found to be located, probably resulting from the interaction between the shock wave and a streamer. Conclusions. The relationship between the CME/flare event and the shock wave signatures is discussed using the temporal association, as well as the spatial information of the radio emission. Further, we discuss the importance and possible effects of the frequently non-radial propagation of the shock wave.Peer reviewe

    Multi-channel coronal hole detection with convolutional neural networks

    No full text
    Context. A precise detection of the coronal hole boundary is of primary interest for a better understanding of the physics of coronal holes, their role in the solar cycle evolution, and space weather forecasting. Aims. We develop a reliable, fully automatic method for the detection of coronal holes that provides consistent full-disk segmentation maps over the full solar cycle and can perform in real-time. Methods. We use a convolutional neural network to identify the boundaries of coronal holes from the seven extreme ultraviolet (EUV) channels of the Atmospheric Imaging Assembly (AIA) and from the line-of-sight magnetograms provided by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). For our primary model (Coronal Hole RecOgnition Neural Network Over multi-Spectral-data; CHRONNOS) we use a progressively growing network approach that allows for efficient training, provides detailed segmentation maps, and takes into account relations across the full solar disk. Results. We provide a thorough evaluation for performance, reliability, and consistency by comparing the model results to an independent manually curated test set. Our model shows good agreement to the manual labels with an intersection-over-union (IoU) of 0.63. From the total of 261 coronal holes with an area > 1.5 × 1010 km2 identified during the time-period from November 2010 to December 2016, 98.1% were correctly detected by our model. The evaluation over almost the full solar cycle no. 24 shows that our model provides reliable coronal hole detections independent of the level of solar activity. From a direct comparison over short timescales of days to weeks, we find that our model exceeds human performance in terms of consistency and reliability. In addition, we train our model to identify coronal holes from each channel separately and show that the neural network provides the best performance with the combined channel information, but that coronal hole segmentation maps can also be obtained from line-of-sight magnetograms alone. Conclusions. The proposed neural network provides a reliable data set for the study of solar-cycle dependencies and coronal-hole parameters. Given the fast and robust coronal hole segmentation, the algorithm is also highly suitable for real-time space weather applications

    CME–HSS Interaction and Characteristics Tracked from Sun to Earth

    No full text
    In a thorough study, we investigate the origin of a remarkable plasma and magnetic field configuration observed in situ on June 22, 2011, near L1, which appears to be a magnetic ejecta (ME) and a shock signature engulfed by a solar wind high-speed stream (HSS). We identify the signatures as an Earth-directed coronal mass ejection (CME), associated with a C7.7 flare on June 21, 2011, and its interaction with a HSS, which emanates from a coronal hole (CH) close to the launch site of the CME. The results indicate that the major interaction between the CME and the HSS starts at a height of 1.3 R⊙ up to 3 R⊙. Over that distance range, the CME undergoes a strong north-eastward deflection of at least 30∘ due to the open magnetic field configuration of the CH. We perform a comprehensive analysis for the CME–HSS event using multi-viewpoint data (from the Solar TErrestrial RElations Observatories, the Solar and Heliospheric Observatory and the Solar Dynamics Observatory), and combined modeling efforts (nonlinear force-free field modeling, Graduated Cylindrical Shell CME modeling, and the Forecasting a CME’s Altered Trajectory – ForeCAT model). We aim at better understanding its early evolution and interaction process as well as its interplanetary propagation and related in situ signatures, and finally the resulting impact on the Earth’s magnetosphere

    Solar Flare-CME Coupling throughout Two Acceleration Phases of a Fast CME

    No full text
    Solar flares and coronal mass ejections (CMEs) are closely coupled through magnetic reconnection. CMEs are usually accelerated impulsively within the low solar corona, synchronized with the impulsive flare energy release. We investigate the dynamic evolution of a fast CME and its associated X2.8 flare occurring on 2013 May 13. The CME experiences two distinct phases of enhanced acceleration, an impulsive one with a peak value of ∼5 km s−2, followed by an extended phase with accelerations up to 0.7 km s−2. The two-phase CME dynamics is associated with a two-episode flare energy release. While the first episode is consistent with the standard eruption of a magnetic flux rope, the second episode of flare energy release is initiated by the reconnection of a large-scale loop in the aftermath of the eruption and produces stronger nonthermal emission up to γ-rays. In addition, this long-duration flare reveals clear signs of ongoing magnetic reconnection during the decay phase, evidenced by extended hard X-ray bursts with energies up to 100–300 keV and intermittent downflows of reconnected loops for \u3e4 hr. The observations reveal that the two-step flare reconnection substantially contributes to the two-phase CME acceleration, and the impulsive CME acceleration precedes the most intense flare energy release. The implications of this non-standard flare/CME observation are discussed

    Earth-affecting solar transients: a review of progresses in solar cycle 24

    No full text
    This review article summarizes the advancement in the studies of Earth-affecting solar transients in the last decade that encompasses most of solar cycle 24. It is a part of the effort of the International Study of Earth-affecting Solar Transients (ISEST) project, sponsored by the SCOSTEP/VarSITI program (2014–2018). The Sun-Earth is an integrated physical system in which the space environment of the Earth sustains continuous influence from mass, magnetic field, and radiation energy output of the Sun in varying timescales from minutes to millennium. This article addresses short timescale events, from minutes to days that directly cause transient disturbances in the Earth’s space environment and generate intense adverse effects on advanced technological systems of human society. Such transient events largely fall into the following four types: (1) solar flares, (2) coronal mass ejections (CMEs) including their interplanetary counterparts ICMEs, (3) solar energetic particle (SEP) events, and (4) stream interaction regions (SIRs) including corotating interaction regions (CIRs). In the last decade, the unprecedented multi-viewpoint observations of the Sun from space, enabled by STEREO Ahead/Behind spacecraft in combination with a suite of observatories along the Sun-Earth lines, have provided much more accurate and global measurements of the size, speed, propagation direction, and morphology of CMEs in both 3D and over a large volume in the heliosphere. Many CMEs, fast ones, in particular, can be clearly characterized as a two-front (shock front plus ejecta front) and three-part (bright ejecta front, dark cavity, and bright core) structure. Drag-based kinematic models of CMEs are developed to interpret CME propagation in the heliosphere and are applied to predict their arrival times at 1 AU in an efficient manner. Several advanced MHD models have been developed to simulate realistic CME events from the initiation on the Sun until their arrival at 1 AU. Much progress has been made on detailed kinematic and dynamic behaviors of CMEs, including non-radial motion, rotation and deformation of CMEs, CME-CME interaction, and stealth CMEs and problematic ICMEs. The knowledge about SEPs has also been significantly improved. An outlook of how to address critical issues related to Earth-affecting solar transients concludes this article
    corecore