905 research outputs found

    The Globular Cluster Systems around NGC 3311 and NGC 3309

    Full text link
    We present extensive new photometry in (g',i') of the large globular cluster (GC) system around NGC 3311, the central cD galaxy in the Hydra cluster. Our GMOS data cover a 5.5' field of view and reach a limiting magnitude i' = 26, about 0.5 magnitude fainter than the turnover point of the GC luminosity function. We find that NGC 3311 has a huge population of ~16, 000 GCs, closely similar to the prototypical high specific frequency Virgo giant M87. The color-magnitude distribution shows that the metal-poor blue GC sequence and the metal-richer red sequence are both present, with nearly equal numbers of clusters. Bimodal fits to the color distributions confirm that the blue sequence shows the same trend of progressively increasing metallicity with GC mass that has previously been found in many other large galaxies; the correlation we find corresponds to a scaling of GC metallicity with mass of Z ~ M^0.6 . By contrast, the red sequence shows no change of mean metallicity with mass, but it shows an upward extension to much higher than normal luminosity into the UCD-like range, strengthening the potential connections between massive GCs and UCDs. The GC luminosity function, which we measure down to the turnover point at M_I = -8.4, also has a normal form like those in other giant ellipticals. Within the Hydra field, another giant elliptical NGC 3309 is sitting just 100" from the cD NGC 3311. We use our data to solve simultaneously for the spatial structure and total GC populations of both galaxies at once. Their specific frequencies are S_N (NGC 3311) = 12.5 +/- 1.5 and S_N (NGC 3309) = 0.6 +/-0.4. NGC 3311 is completely dominant and entirely comparable with other cD-type systems such as M87 in Virgo.Comment: 15 pages, 15 figures. Accepted to the Astrophysical Journal. Version with higher resolution figures is available at http://www.thewehners.net/astro/papers/wehner_n3311_highres.pd

    Non-intersecting leaf insertion algorithm for tree structure models

    Get PDF
    We present an algorithm and an implementation to insert broadleaves or needleleaves to a quantitative structure model according to an arbitrary distribution, and a data structure to store the required information efficiently. A structure model contains the geometry and branching structure of a tree. The purpose of the work is to offer a tool for making more realistic simulations with tree models with leaves, particularly for tree models developed from terrestrial laser scan (TLS) measurements. We demonstrate leaf insertion using cylinder-based structure models, but the associated software implementation is written in a way that enables the easy use of other types of structure models. Distributions controlling leaf location, size and angles as well as the shape of individual leaves are user-definable, allowing any type of distribution. The leaf generation process consist of two stages, the first of which generates individual leaf geometry following the input distributions, while in the other stage intersections are prevented by doing transformations when required. Initial testing was carried out on English oak trees to demonstrate the approach and to assess the required computational resources. Depending on the size and complexity of the tree, leaf generation takes between 6 and 18 minutes. Various leaf area density distributions were defined, and the resulting leaf covers were compared to manual leaf harvesting measurements. The results are not conclusive, but they show great potential for the method. In the future, if our method is demonstrated to work well for TLS data from multiple tree types, the approach is likely to be very useful for 3D structure and radiative transfer simulation applications, including remote sensing, ecology and forestry, among others

    Old and young bulges in late-type disk galaxies

    Get PDF
    ABRIDGED: We use HSTACS and NICMOS imaging to study the structure and colors of a sample of nine late-type spirals. We find: (1) A correlation between bulge and disks scale-lengths, and a correlation between the colors of the bulges and those of the inner disks. Our data show a trend for bulges to be more metal-enriched than their surrounding disks, but otherwise no simple age-metallicity connection between these systems; (2) A large range in bulge stellar population properties, and, in particular, in stellar ages. Specifically, in about a half of the late-type bulges in our sample the bulk of the stellar mass was produced recently. Thus, in a substantial fraction of the z=0 disk-dominated bulged galaxies, bulge formation occurs after the formation/accretion of the disk; (3) In about a half of the late-type bulges in our sample, however, the bulk of the stellar mass was produced at early epochs; (4) Even these "old" late-type bulges host a significant fraction of stellar mass in a young(er) c component; (5) A correlation for bulges between stellar age and stellar mass, in the sense that more massive late-type bulges are older than less massive late-type bulges. Since the overall galaxy luminosity (mass) also correlates with the bulge luminosity (mass), it appears that the galaxy mass regulates not only what fraction of itself ends up in the bulge component, but also "when" bulge formation takes place. We show that dynamical friction of massive clumps in gas-rich disks is a plausible disk-driven mode for the formation of "old" late-type bulges. If disk evolutionary processes are responsible for the formation of the entire family of late-type bulges, CDM simulations need to produce a similar number of initially bulgeless disks in addition to the disk galaxies that are observed to be bulgeless at z=0.Comment: ApJ in press; paper with high resolution figures available at http://www.exp-astro.phys.ethz.ch/carollo/carollo1_2006.pdf; B, I, and H surface brightness profiles published in electronic tabular for

    Dust Attenuation in Late-Type Galaxies. I. Effects on Bulge and Disk Components

    Full text link
    We present results of new Monte Carlo calculations made with the DIRTY code of radiative transfer of stellar and scattered radiation for a dusty giant late-type galaxy like the Milky Way, which illustrate the effect of the attenuation of stellar light by internal dust on the integrated photometry of the individual bulge and disk components. Here we focus on the behavior of the attenuation function, the color excess, and the fraction of light scattered or directly transmitted towards the outside observer as a function of the total amount of dust and the inclination of the galaxy, and the structure of the dusty interstellar medium (ISM) of the disk. We confirm that dust attenuation produces qualitatively and quantitatively different effects on the integrated photometry of bulge and disk, whatever the wavelength. In addition, we find that the structure of the dusty ISM affects more sensitively the observed magnitudes than the observed colors of both bulge and disk. Finally, we show that the contribution of the scattered radiation to the total monochromatic light received by the outside observer is significant, particularly at UV wavelengths, even for a two-phase, clumpy, dusty ISM. Thus understanding dust scattering properties is fundamental for the interpretation of extragalactic observations in the rest-frame UV.Comment: 62 pages, 28 eps-figures, 1 table, accepted for publication in ApJ Main Journa

    The disruption of nearby galaxies by the Milky Way

    Full text link
    Interactions between galaxies are common and are an important factor in determining their physical properties such as position along the Hubble sequence and star-formation rate. There are many possible galaxy interaction mechanisms, including merging, ram-pressure stripping, gas compression, gravitational interaction and cluster tides. The relative importance of these mechanisms is often not clear, as their strength depends on poorly known parameters such as the density, extent and nature of the massive dark halos that surround galaxies. A nearby example of a galaxy interaction where the mechanism is controversial is that between our own Galaxy and two of its neighbours -- the Large and Small Magellanic Clouds. Here we present the first results of a new HI survey which provides a spectacular view of this interaction. In addition to the previously known Magellanic Stream, which trails 100 degrees behind the Clouds, the new data reveal a counter-stream which lies in the opposite direction and leads the motion of the Clouds. This result supports the gravitational model in which leading and trailing streams are tidally torn from the body of the Magellanic Clouds.Comment: 17 pages with 5 figures in gif format, scheduled for publication in the August 20th, 1998 issue of Natur

    An Extragalactic HI Cloud with No Optical Counterpart?

    Get PDF
    We report the discovery, from the HI Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen which we believe to be extragalactic. The HI mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10^7 Msun, using an estimated distance of ~3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits (mu(B)~ 27 mag arcsec^-2). HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, HI 1225+01 (the Virgo HI Cloud) and has a size of at least 15 kpc. The mean velocity dispersion, measured with the Australia Telescope Compact Array (ATCA), is only 4 km/s for the main component and because of the weak or non-existent star-formation, possibly reflects the thermal linewidth (T<2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 10^19 cm^-2, which is estimated to be a factor of two below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognised class of Compact High Velocity Clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud/Galaxy system at perigalacticon ~ 2 x 10^8 yr ago.Comment: 23 pages, 7 figures, AJ accepte

    A blind HI survey of the M81 group

    Get PDF
    Results are presented of the first blind HI survey of the M81 group of galaxies. The data were taken as part of the HI Jodrell All Sky Survey (HIJASS). The survey reveals several new aspects to the complex morphology of the HI distribution in the group. All four of the known dwarf irregular (dIrr) galaxies close to M81 can be unambiguously seen in the HIJASS data. Each forms part of the complex tidal structure in the area. We suggest that at least three of these galaxies may have formed recently from the tidal debris in which they are embedded. The structure connecting M81 to NGC2976 is revealed as a single tidal bridge of mass approx. 2.1 x 10^8 Msol and projected spatial extent approx. 80 kpc. Two `spurs' of HI projecting from the M81 complex to lower declinations are traced over a considerably larger spatial and velocity extent than by previous surveys. The dwarf elliptical (dE) galaxies BK5N and Kar 64 lie at the spatial extremity of one of these features and appear to be associated with it. We suggest that these may be the remnants of dIrrs which has been stripped of gas and transmuted into dEs by close gravitational encounters with NGC3077. The nucleated dE galaxy Kar 61 is unambiguously detected in HI for the first time and has an HI mass of approx.10^8 Msol, further confirming it as a dE/dIrr transitional object. HIJASS has revealed one new possible group member, HIJASS J1021+6842. This object contains approx. 2 x 10^7 Msol of HI and lies approx.105arcmin from IC2574. It has no optical counterpart on the Digital Sky Survey.Comment: To be published in Astrophysical Journal Letters 9 pages, including 3 figure

    Internal Extinction in Spiral Galaxies in the Near Infrared

    Full text link
    In order to study the effects of internal extinction in spiral galaxies we search for correlations of near infrared (NIR) photometric parameters with inclination. We use data from the 2 Micron All-Sky Survey (2MASS) Extended Source Catalog (XSC) on 15,224 spiral galaxies for which we also have redshifts. For 3035 of the galaxies, I-band photometry is available which is included in the analysis. From the simple dependence of reddening on inclination we derive a lower limit to the difference in magnitude between the face-on and edge-on aspect of 0.9, 0.3 and 0.1 magnitudes in I (0.81 um), J (1.25 um) and H (1.65 um) bands. We find that the faintest isophotal radius reported in the XSC (at the 21st mag/arc sq level) is closer to the centers of the galaxies than other common isophotal measures (e.g. the 23.5 mag/arc sq radius in I-band), and argue that it should not be assumed to represent an outer isophote at which galaxies are transparent at all viewing angles. A simple linear extinction law (i.e. Delta M = gamma log(a/b)) is not adequate for the full range of disk inclinations and we adopt both a bi-linear and a quadratic law. A simple photometric model is used to explain the observed behavior. Internal extinction depends on galaxy luminosity. We show that for galaxies with a K total magnitude dimmer than -20, -20.7 and -20.9 the data indicates zero extinction in J, H and K respectively, while disk opacity increases monotonically with increasing disk luminosity.Comment: Accepted for publication in AJ (July 2003). 28 pages, 13 figures. Revised version corrects some typos including an error in the reported luminosity dependence of the extinction correctio

    A New Strategy for Deep Wide-Field High Resolution Optical Imaging

    Get PDF
    We propose a new strategy for obtaining enhanced resolution (FWHM = 0.12 arcsec) deep optical images over a wide field of view. As is well known, this type of image quality can be obtained in principle simply by fast guiding on a small (D = 1.5m) telescope at a good site, but only for target objects which lie within a limited angular distance of a suitably bright guide star. For high altitude turbulence this 'isokinetic angle' is approximately 1 arcminute. With a 1 degree field say one would need to track and correct the motions of thousands of isokinetic patches, yet there are typically too few sufficiently bright guide stars to provide the necessary guiding information. Our proposed solution to these problems has two novel features. The first is to use orthogonal transfer charge-coupled device (OTCCD) technology to effectively implement a wide field 'rubber focal plane' detector composed of an array of cells which can be guided independently. The second is to combine measured motions of a set of guide stars made with an array of telescopes to provide the extra information needed to fully determine the deflection field. We discuss the performance, feasibility and design constraints on a system which would provide the collecting area equivalent to a single 9m telescope, a 1 degree square field and 0.12 arcsec FWHM image quality.Comment: 46 pages, 22 figures, submitted to PASP, a version with higher resolution images and other supplementary material can be found at http://www.ifa.hawaii.edu/~kaiser/wfhr

    New Galaxies Discovered in the First Blind HI Survey of the Centaurus A Group

    Get PDF
    We have commenced a 21-cm survey of the entire southern sky (\delta < 0 degrees, -1200 km/s < v < 12700 km/s) which is ''blind'', i.e. unbiased by previous optical information. In the present paper we report on the results of a pilot project which is based on data from this all-sky survey. The project was carried out on an area of 600 square degrees centred on the nearby Centaurus A (Cen A) group of galaxies at a mean velocity of v ~ 500 km/s. This was recently the subject of a separate and thorough optical survey. We found 10 new group members to add to the 21 galaxies already known in the Cen A group: five of these are previously uncatalogued galaxies, while five were previously catalogued but not known to be associated with the group. We found optical counterparts for all the HI detections, most of them intrinsically very faint low surface brightness dwarfs. The new group members add approximately 6% to the HI mass of the group and 4% to its light. The HI mass function, derived from all the known group galaxies in the interval 10^7 \Msun of HI to 10^9 \Msun of HI, has a faint-end slope of 1.30 +/- 0.15, allowing us to rule out a slope of 1.7 at 95% confidence. Even if the number in the lowest mass bin is increased by 50%, the slope only increases to 1.45 +/- 0.15.Comment: 19 pages Latex, 6 figures (Fig. 2 in four parts, Fig.5 in two parts). To appear in The Astrophysical Journal (Vol. 524, October 1999
    • 

    corecore