ABRIDGED: We use HSTACS and NICMOS imaging to study the structure and colors
of a sample of nine late-type spirals. We find: (1) A correlation between bulge
and disks scale-lengths, and a correlation between the colors of the bulges and
those of the inner disks. Our data show a trend for bulges to be more
metal-enriched than their surrounding disks, but otherwise no simple
age-metallicity connection between these systems; (2) A large range in bulge
stellar population properties, and, in particular, in stellar ages.
Specifically, in about a half of the late-type bulges in our sample the bulk of
the stellar mass was produced recently. Thus, in a substantial fraction of the
z=0 disk-dominated bulged galaxies, bulge formation occurs after the
formation/accretion of the disk; (3) In about a half of the late-type bulges in
our sample, however, the bulk of the stellar mass was produced at early epochs;
(4) Even these "old" late-type bulges host a significant fraction of stellar
mass in a young(er) c component; (5) A correlation for bulges between stellar
age and stellar mass, in the sense that more massive late-type bulges are older
than less massive late-type bulges. Since the overall galaxy luminosity (mass)
also correlates with the bulge luminosity (mass), it appears that the galaxy
mass regulates not only what fraction of itself ends up in the bulge component,
but also "when" bulge formation takes place. We show that dynamical friction of
massive clumps in gas-rich disks is a plausible disk-driven mode for the
formation of "old" late-type bulges. If disk evolutionary processes are
responsible for the formation of the entire family of late-type bulges, CDM
simulations need to produce a similar number of initially bulgeless disks in
addition to the disk galaxies that are observed to be bulgeless at z=0.Comment: ApJ in press; paper with high resolution figures available at
http://www.exp-astro.phys.ethz.ch/carollo/carollo1_2006.pdf; B, I, and H
surface brightness profiles published in electronic tabular for