12 research outputs found

    Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of α3-, β3- and γ2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor. Biochemically Smad4 is a transmitter of signals of the TGFβ superfamily of cytokines. We have reported previously, that Smad4 functions as a positive transcriptional regulator of constitutive and of TGFβ-induced transcription of all three genes encoding Laminin-332, LAMA3, LAMB3 and LAMC2.</p> <p>Methods</p> <p>Promoter-reporter constructs harboring 4 kb upstream regions, each of the three genes encoding Laminin-322 as well as deletion and mutations constructs were established. Promoter activities and TGFβ induction were assayed through transient transfections in Smad4-negative human cancer cells and their stable Smad4-positive derivatives. Functionally relevant binding sites were subsequently confirmed through chromatin immunoprecipitation.</p> <p>Results</p> <p>Herein, we report that Smad4 mediates transcriptional regulation through three different mechanisms, namely through Smad4 binding to a functional SBE site exclusively in the LAMA3 promoter, Smad4 binding to AP1 (and Sp1) sites presumably via interaction with AP1 family components and lastly a Smad4 impact on transcription of AP1 factors. Whereas Smad4 is essential for positive regulation of all three genes, the molecular mechanisms are significantly divergent between the LAMA3 promoter as compared to the LAMB3 and LAMC2 promoters.</p> <p>Conclusion</p> <p>We hypothesize that this divergence in modular regulation of the three promoters may lay the ground for uncoupled regulation of Laminin-332 in Smad4-deficient tumor cells in response to stromally expressed cytokines acting on budding tumor cells.</p

    Role of the tumour suppressor Smad 4 in expression control of laminin-332 an inhibitor and activator of tumour invasion

    No full text
    Die Basalmembran (BM)-Komponente Laminin-332, die sich aus einer α\alpha3-, β\beta3- und γ\gamma2-Kette zusammensetzt, spielt physiologisch und pathophysiologisch eine wichtige Rolle. Im Rahmen dieser Arbeit wurde Laminin-332 als Zielstruktur des Tumorsuppressors Smad4 charakterisiert, der in Pankreas- und Kolontumoren häufig funktionell inaktiviert ist. Auf biochemischer Ebene ist Smad4 ein zentraler Transmitter von Signalen der TGFβ\beta Zytokin-Superfamilie. Zwei Mechanismen konnten aufgezeigt werden, durch die der Verlust des Tumorsuppressors Smad4 zur Erlangung invasiver Eigenschaften von Tumorzellen beitragen kann: Durch Wegfall der Smad4-abhängigen basalen und TGFβ\beta induzierten Expression aller drei Ketten wird das Laminin-332 Heterotrimer in geringerem Umfang exprimiert, was die Auflösung der BM-Barriere begünstigt. Die Laminin-332 Expression ist in Smad4-negativen Zellen in Antwort auf das inflammatorische Zytokin TNFα\alpha entkoppelt, wodurch das invasionsfördernde γ\gamma2-Monomer verstärkt freigesetzt wird

    Uncoupled responses of Smad4-deficient cancer cells to TNFα result in secretion of monomeric laminin-γ2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Functional loss of the tumor suppressor Smad4 is involved in pancreatic and colorectal carcinogenesis and has been associated with the acquisition of invasiveness. We have previously demonstrated that the heterotrimeric basement membrane protein laminin-332 is a Smad4 target. Namely, Smad4 functions as a positive transcriptional regulator of all three genes encoding laminin-332; its loss is thus implicated in the reduced or discontinuous deposition of the heterotrimeric basement membrane molecule as evident in carcinomas. Uncoupled expression of laminin genes, on the other hand, namely overexpression of the laminin-γ2 chain is an impressive marker at invasive edges of carcinomas where tumor cells are maximally exposed to signals from stromal cell types like macrophages. As Smad4 is characterized as an integrator of multiple extracellular stimuli in a strongly contextual manner, we asked if loss of Smad4 may also be involved in uncoupled expression of laminin genes in response to altered environmental stimuli. Here, we address Smad4 dependent effects of the prominent inflammatory cytokine TNFα on tumor cells.</p> <p>Results</p> <p>Smad4-reconstituted colon carcinoma cells like adenoma cells respond to TNFα with an increased expression of all three chains encoding laminin-332; coincubation with TGFβ and TNFα leads to synergistic induction and to the secretion of large amounts of the heterotrimer. In contrast, in Smad4-deficient cells TNFα can induce expression of the γ2 and β3 but not the α3 chain. Surprisingly, this uncoupled induction of laminin-332 chains in Smad4-negative cells rather than causing intracellular accumulation is followed by the release of γ2 into the medium, either in a monomeric form or in complexes with as yet unknown proteins. Soluble γ2 is associated with increased cell migration.</p> <p>Conclusions</p> <p>Loss of Smad4 may lead to uncoupled induction of laminin-γ2 in response to TNFα and may therefore represent one of the mechanisms which underlie accumulation of laminin-γ2 at the invasive margin of a tumor. The finding, that γ2 is secreted from tumor cells in significant amounts and is associated with increased cell migration may pave the way for further investigation to better understand its functional relevance for tumor progression.</p

    SDF-1 Inhibition Targets the Bone Marrow Niche for Cancer Therapy

    Get PDF
    Summary: Bone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as multiple myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here, we show that stromal cell-derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis and report on the discovery of the high-affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol). In vivo confocal imaging showed that SDF-1 levels are increased within MM cell-colonized BM areas. Using in vivo murine and xenograft mouse models, we document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces MM cell homing and growth, thereby inhibiting MM disease progression. Targeting of SDF-1 represents a valid strategy for preventing or disrupting colonization of the BM by MM cells. : Roccaro et al. show that stromal-cell-derived factor-1 (SDF-1) is highly expressed in active multiple myeloma (MM), as well as in bone marrow (BM) sites of tumor metastasis, and report on a high-affinity PEGylated mirror-image l-oligonucleotide (olaptesed pegol) that specifically binds and neutralizes SDF-1 in vitro and in vivo. Using in vivo murine and xenograft mouse models, the authors document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces clonal plasma cell homing and growth, thereby inhibiting MM disease progression

    The effects of the anti-hepcidin Spiegelmer NOX-H94 on inflammation-induced anemia in cynomolgus monkeys

    No full text
    Item does not contain fulltextAnemia of chronic inflammation is the most prevalent form of anemia in hospitalized patients. A hallmark of this disease is the intracellular sequestration of iron. This is a consequence of hepcidin-induced internalization and subsequent degradation of ferroportin, the hepcidin receptor and only known iron-export protein. This study describes the characterization of novel anti-hepcidin compound NOX-H94, a structured L-oligoribonucleotide that binds human hepcidin with high affinity (Kd = 0.65 +/- 0.06 nmol/L). In J774A.1 macrophages, NOX-H94 blocked hepcidin-induced ferroportin degradation and ferritin expression (half maximal inhibitory concentration = 19.8 +/- 4.6 nmol/L). In an acute cynomolgus monkey model of interleukin 6 (IL-6)-induced hypoferremia, NOX-H94 inhibited serum iron reduction completely. In a subchronic model of IL-6-induced anemia, NOX-H94 inhibited the decrease in hemoglobin concentration. We conclude that NOX-H94 protects ferroportin from hepcidin-induced degradation. Therefore, this pharmacologic approach may represent an interesting treatment option for patients suffering from anemia of chronic inflammation
    corecore