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SUMMARY

Bone marrow (BM) metastasis remains one of the
main causes of death associated with solid tumors
as well as multiple myeloma (MM). Targeting the
BM niche to prevent or modulate metastasis has
not been successful to date. Here, we show that stro-
mal cell-derived factor-1 (SDF-1/CXCL12) is highly
expressed in active MM, as well as in BM sites of
tumor metastasis and report on the discovery of
the high-affinity anti-SDF-1 PEGylated mirror-image
L-oligonucleotide (olaptesed-pegol). In vivo confocal
imaging showed that SDF-1 levels are increased
withinMMcell-colonizedBMareas. Using in vivomu-
rine and xenograft mouse models, we document that
in vivo SDF-1 neutralization within BM niches leads
to a microenvironment that is less receptive for MM
cells and reduces MM cell homing and growth,
thereby inhibiting MM disease progression. Target-
ing of SDF-1 represents a valid strategy for prevent-
ing or disrupting colonization of the BM by MM cells.
INTRODUCTION

Mechanisms that allow clonal multiple myeloma (MM) or solid

tumor cells to home to and colonize bone marrow (BM) sites

are not well defined. Seventy percent of patients with metastatic

breast or prostate cancer present with involvement of the BM,

and BM metastases also appear in about 15%–30% of patients

with colon, lung, stomach, thyroid, prostate, and kidney cancer

(Roodman, 2004). MM patients at diagnosis are characterized

by the presence of multiple BM-lytic lesions, which indicate

the perpetual dissemination of clonal plasma cells—originating

in the birthplace of the MM clone—to multiple BM niches

throughout the skeleton (Roodman, 2004); such lesions suggest

that BM niches form an optimal environment for the lodgment

and growth of MM cells. MM cells may also behave similarly to
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hematopoietic stem cells (HSCs), explaining why MM cells

are selectively trafficked to BM sites (Karnoub and Weinberg,

2006–2007; Scadden, 2006; Smith et al., 2004). In fact, it has

been argued that clonal plasma cells—or other types of BM-

metastasizing tumor cells—use the same signals and molecules

that are critical for selection of the HSC niche: these include the

chemoattractant stromal-cell-derived factor-1 (SDF-1/CXCL12),

which is a major retention factor for HSCs and mature immune

cells in BM tissue (Scheiermann et al., 2013).

The biological effects of SDF-1 are related its ability to trigger

motility, chemotactic responses, adhesion, and the secretion of

matrix metalloproteinases and angiopoietic factors. The impor-

tance of SDF-1 is also reflected by its ability to activate integrins

such as LFA-1, VLA-4, and VLA-5 (expressed on HSCs), and to

thus promote adhesion and migration (Dar et al., 2006; Kucia

et al., 2005; Peled et al., 1999, 2000; Wysoczynski et al., 2005).

Other factors such as fibroblast growth factors, transforming

growth factor b, insulin-like growth factors I and II, platelet-

derived growth factors, and bone morphogenetic proteins also

contribute to the preferential homing of tumor cells to the BM.

And additionally, it is likely that areas of high blood flow in

red marrow facilitate tumor cell metastasis to these regions of

BM (Callander and Roodman, 2001; Chirgwin and Guise, 2000;

Roodman, 2004). Moreover, MM cells are characterized by

the presence of CXCR4 (one of the SDF-1 receptors), and

SDF-1-dependent signaling via CXCR4 plays a critical role in

regulating fundamental biological functions of MM cells, such

as migration and adhesion in vitro, as well as their homing to

the bone marrow in vivo (Alsayed et al., 2007; Azab et al.,

2009). SDF-1 also activates the CXCR7 receptor (Tarnowski

et al., 2010), which modulates trafficking and adhesion of human

malignant hematopoietic cells.

Collectively, these findings point to the importance of targeting

SDF-1, and of neutralizing CXCR4 and CXCR7, both of which are

expressed on tumor cells (Burwick et al., 2008; Miao et al., 2007;

Tarnowski et al., 2010; Xu et al., 2011). We reasoned that by

neutralizing SDF-1, we can change the BM milieu, create a

microenvironment that is less receptive for MM cells, diminish

the homing of MM cells to the BM, and thereby inhibit MM

mailto:irene_ghobrial@dfci.harvard.edu
http://dx.doi.org/10.1016/j.celrep.2014.08.042
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2014.08.042&domain=pdf


disease progression. We report here on the discovery and char-

acterization of olaptesed pegol (ola-PEG), a high-affinity L-RNA

Spiegelmer to SDF-1, and we demonstrate that ola-PEG-medi-

ated neutralization of SDF-1 is a valid strategy for preventing

MM progression in vivo.

RESULTS

Metastatic Bone Marrow Niches Reveal Increased
Expression of SDF-1
Given the importance of SDF-1 in facilitating bone metastasis in

a variety of clonal tumor cells, we compared the expression of

this chemokine in the BM of patients with bone metastases

of solid tumors or of multiple myeloma (MM), to that in the BM

of healthy individuals or of patients with monoclonal gammop-

athy of undetermined significance (MGUS). Our findings indicate

that BM that is affected by colonization of solid tumor cells or

MM cells presents with higher expression of SDF-1, compared

to samples from healthy controls or from MGUS patients, which

showed scattered, minimal SDF-1 expression (Figure 1A). These

findings indicate the significance of SDF-1 in the BM niche of

metastatic tumors, including MM as a model of BM metastasis.

We next focused on corroborating the role of SDF-1 in facili-

tating the homing, lodgment, and growth of MM cells in vivo.

We used in vivo live confocal imaging to determine the localiza-

tion and spatial distribution of SDF-1 in BM niches that are occu-

pied byMM cells. By injecting a fluorescently labeled anti-SDF-1

in mice that harbor MM GFP+ tumors, we found that SDF-1 was

enriched in BM areas that were colonized by MM cells, whereas

SDF-1 was only observed within blood vessels in BM niches that

were free of MM cells (Figure 1B). This observation is consistent

with prior reports that transplanted hematopoietic stem and

progenitor cell populations localize in subdomains of BM micro-

vessels, where the SDF-1 chemokine is particularly abundant

(Colmone et al., 2008; Sipkins et al., 2005). The finding was

also supported by the significantly higher level of SDF-1 secreted

from primary BM-mesenchymal stromal cells (MSCs) that were

obtained fromMMpatients, relative to those that were harvested

from healthy subjects (Figure 1C). Taken together, these results

demonstrate that MM cells preferentially localized in SDF-1-

enriched BM niche.

To better define the functional role of MM BM-MSC-secreted

SDF-1 on MM cells, we used primary MM BM-MSCs to under-

take SDF-1 loss-of-function studies. Transduction and knock-

down efficiency of SDF-1 were evaluated with use of immunoflu-

orescence and ELISA, respectively (Figures S1A and S1B).

Results showed that knocking down the secretion of SDF-1

fromMMBM-MSCs inhibits the adhesion and also the migration

of MM cells toward primary MM BM-MSCs (Figures S1C and

S1D). Moreover, MM cells cultured in the presence of BM-

MSC cells in which SDF-1 was knocked down presented with

reduced activation of prosurvival and migration-related path-

ways (Figure S1E).

Identification of the SDF-1-Neutralizing Spiegelmer
Ola-Pegol
We identified a high-affinity, structured L-RNA oligonucleotide

(Spiegelmer) (Klussmann et al., 1996) that binds and inhibits
SDF-1. Initially, we applied an in vitro evolutionary screening

technology based on the SELEX process (Tuerk and Gold,

1990) to select aptamers from a pool of randomized RNA oligo-

nucleotides against D-SDF-1 (the enantiomer of natural L-SDF-1).

This process led to the identification of aptamer sequences,

which were synthesized as Spiegelmers by using nonnatural

L-ribonucleotides. The Spiegelmers were then able to bind to

natural L-SDF-1.

For in vitro selection against D-SDF-1, we used reiterative

rounds with increasing stringency and amplification steps that

included mutagenic PCR (in rounds 15 and 17; Figure S2A).

The enriched library from round 18 was cloned and sequenced.

An alignment revealed sequences that differed by point muta-

tions and by a nonrelated orphan sequence (Figure S2B). After

truncating the primer binding sites, the best aptamer (193-G2)

was trimmed to a 45-mer (193-G2-001) without loss of affinity

(Figure S2C). A pull-down assay showed that the binding of

193-G2-001 to D-SDF-1 resulted in a dissociation constant (KD)

of 268 pM at 37�C (Figure 2A).

The RNA aptamer 193-G2-001 ola-PEG was converted into

its corresponding Spiegelmer. A secondary structure prediction

(mfold) is depicted in Figure 2B (Zuker, 2003). To slow down renal

clearance of the Spiegelmer, we increased its molecular weight

by conjugating a 40 kDa polyethylene glycol (PEG) to its 50 end.
This PEGylated L-RNA oligonucleotide was named 0p; all subse-

quent in vitro and in vivo data were generated with ola-PEG. KD

of approximately 200 pM to human andmouse SDF-1a/b/gwere

determined with use of surface plasmon resonance (Biacore) un-

der physiological conditions (Figure 2C; Table S1). Because the

3D structures of chemokines are conserved (Wells and Peitsch,

1997), we used a competitive assay format to test ola-PEG bind-

ing against a panel of 23 different chemokines. Other than solu-

ble SDF-1, none of the other chemokines could compete with

ola-PEG, demonstrating a high selectivity of ola-PEG to SDF-1

(Figure 3A).

In Vitro Functional Characterization of
Ola-PEG-Dependent Targeting of SDF-1
We evaluated the influence of SDF-1 on the expression of

CXCR4 and assessed whether SDF-1-induced activity could

be blocked by ola-PEG. Stimulation of Jurkat cells with human

SDF-1 resulted in a dose-dependent internalization of CXCR4.

The maximal effect was reached at around 3 nM, half-maximal

internalization was achieved at around 0.3 nM. Increasing

concentrations of ola-PEG inhibited SDF-1-mediated CXCR4

receptor internalization, with an IC50 of 200 pM (Figure 3B).

Also, ola-PEG inhibited SDF-1-mediated chemotaxis of

CXCR4-expressing Jurkat cells in a dose-dependent manner,

displaying an IC50 of 200 pM (Figure 3C). Additionally, using

a b-arrestin complementation assay with a CXCR7 reporter

cell line, we confirmed that ola-PEG also blocks SDF-1-depen-

dent activation of the second SDF-1 receptor CXCR7. At a

fixed concentration of 10 nM SDF-1 (EC50), the half-maximal

inhibition (IC50) was at 5.1 nM ola-PEG (Figure 3D). (Note that

for stoichiometric reasons, the assay does not allow measure-

ment of IC50 values lower than 5 nM.) A nonfunctional Spie-

gelmer with the reverse sequence showed no effects (data

not shown).
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Figure 1. SDF-1 Expression in Metastasized Bone Marrow Niches

(A) Bone marrow (BM) specimens were obtained from patients with multiple myeloma, MGUS, or solid tumors and stained with anti-SDF-1; MGUS samples were

double-stained for SDF-1 (brown) and CD138 (blue). Normal BM was used as control. P indicates p value.

(legend continued on next page)
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Figure 2. 193-G2-001/Olaptesed Secondary Structure and Binding

Kinetics

(A) Pull-down binding assay of aptamer D-193-G2-001, using the biotinylated

selection target D-SDF-1. Fitting with a three parameter algorithm revealed a

KD of 268 pM.

(B) Secondary structure prediction for olaptesed, with potential base pairs

forming three hydrogen bonds depicted in red, and those forming two

hydrogen bonds with each other shown in blue.

(C) Biacore analysis of ola-PEG binding to immobilized human SDF-1a, at

37�C under physiological buffer conditions. Raw data: black; fitted data: red.

Figure 3. In Vitro Characterization of Ola-PEG

(A) CC, CXC, CX3C, and XC chemokines (2 mM) were checked for competing

with the binding of ola-PEG (12.5 nM) to immobilized human SDF-1a. As

expected, mixtures of ola-PEG with SDF-1a or SDF-1b competed fully, but

none of the other chemokines did so. Data are double referenced and are

plotted as mean response units ±SD of n = 2 injections.

(B) Inhibition of SDF-1a-induced CXCR4 receptor internalization by ola-PEG.

Jurkat cells were incubated with 0.3 nM SDF-1, plus various concentrations

of ola-PEG. CXCR4 surface expression was quantified by flow cytometry,

using a CXCR4 specific PE-labeled antibody. Data points are means ± SD for

triplicate measurements. ola-PEG inhibits CXCR4 internalization with an IC50

of approximately 200 pM.

(C) Inhibition of SDF-1-induced chemotaxis. Ola-PEG inhibits chemotaxis

of Jurkat cells, with an IC50 of approximately 200 pM. Baseline level (fluores-

cencemeasured without SDF-1) is reached at approximately 800 pM ola-PEG.

Means ± SD for triplicate measurements are shown.

(D) Inhibition of SDF-1-induced CXCR7 activation by ola-PEG. The mean IC50

value obtained from three independent experiments was 5.1 nM.
Pharmacokinetics of Ola-PEG
Following a single subcutaneous (s.c.) administration of

10 mg/kg ola-PEG in mice, maximum plasma concentrations

(Cmax) of ola-PEG were observed at 12 and 6 hr in male and

female mice, respectively (tmax) (Table S2; Figure S2D). There-

after, the plasma concentrations of ola-PEG declined, with

a mean apparent half-life (t1/2) of 13 hr, which is comparable

to the value obtained after intravenous (i.v.) administration.

The bioavailability (F) of ola-PEG in male and female mice was

estimated to be approximately 29.8% and 39.8%, respectively,

with no appreciable or consistent gender-related difference

in systemic exposure (AUC and Cmax) to ola-PEG. Human phar-

macokinetics and pharmacodynamics, along with safety evalu-
(B) SCID/Bgmice were injected (i.v.) with 53 106 MM.1S-GFP+ cells; after 3 week

mouse skull BM niches were imaged after 4 hr, using in vivo confocal microsco

green; vessels: red; AF633-anti-SDF-1a Ab: blue).

(C) Levels of SDF-1a in primary BM mesenchymal stromal cells isolated from

P indicates p value.
ations, were performed in healthy volunteers in a clinical phase I

study (Vater, 2013): ola-PEG had a mean plasma half-life of

33–40 hr, and was safe and well tolerated up to the highest

dose of 10.8 mg/kg, when administered as a 15 min i.v. infusion.

ola-PEG mobilized white blood cells and hematopoietic stem
s, Alexa Fluor (AF) 633-conjugated anti-SDF-1a (Ab) was administered i.v., and

py. Evans Blue was used to visualize blood vessels (MM.1S-GFP+/Luc+ cells:

MM patients (n = 10) and healthy subjects (n = 5) were evaluated by ELISA.
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Figure 4. Ola-PEG-Dependent Neutralization of SDF-1 Reduces MM
Tumor Progression In Vivo

(A) Three weeks of pretreatment with ola-PEG (20 mg/kg injected every other

day; s.c.) led to inhibition of MM tumor progression, shown with use of

bioluminescence imaging. Ola-PEG-treated mice are compared to mice that

were pretreated with AMD3100 (5 mg/kg, daily; s.c.), or to untreated mice

(n = 8/group). Error bars indicate SD. P indicates p value.

(B) Ola-PEG-pretreated mice presented with prolonged survival relative to

AMD3100-pretreated or untreated mice (n = 10/group). P indicates p value.
and progenitor cells, as shown by CD34+ cell counts and colony

formation assays.

Ola-PEG-Dependent Neutralization of SDF-1 Modulates
BM Niches and Inhibits Bone Engraftment and Bone
Colonization by MM Cells
To test the hypothesis that neutralization of SDF-1 in BM niches

makes them less receptive toMM cell engraftment and coloniza-

tion, we first examined whether ola-PEG-dependent SDF-1

inhibition prevents MM cell bone engraftment. MM cells were

injected (i.v.) into control untreated mice, or into mice that were

pretreated with ola-PEG (20 mg/kg; every other day) or with

AMD3100 (5 mg/kg; daily; s.c.); treatment was continued after

MM cell injection. Mice treated with ola-PEG showed significant

reduction of MM cell tumor growth, relative to mice that were

treated with AMD3100, or were untreated (Figure 4A), indicating

that ola-PEG-dependent modulation of the BM milieu delays

MM cell BM engraftment and tumor growth. Importantly, we de-

tected differences in survival with ola-PEG-treated mice display-

ing significantly improved survival compared to those treated

with AMD3100, or to untreated mice (Figure 4B). We next inves-

tigated whether ola-PEG treatment could also reduce MM cell

dissemination from a primary BM site to distant bones. MM
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cell lines (murine or human) were loaded into bone chips and

implanted subcutaneously (s.c.) into recipient mice that were

pretreated with either vehicle control, or with ola-PEG. After

the implantation, ola-PEG treatment was continued in the mice

that were ola-PEG pretreated. Results showed that, compared

to control mice, SDF-1 neutralization by ola-PEG significantly

inhibited the colonization of distant BM sites by MM cells

(Figures 5A–5D). Importantly, no ola-PEG-mediated cytotoxic

effects were detected in MM cells in vitro (Figure S3A).

To better understand how BM niches are modulated by

neutralizing SDF-1, we examined ola-PEG-mediated transcrip-

tional changes in the BM microenvironment in vivo. SCID/Bg

mice were treated with ola-PEG (s.c. injection, 20 mg/kg, given

every other day) for 3 weeks. Untreated mice were used as con-

trols. At the end of the third week, BM was harvested, and gene

expression profiling was performed. Ola-PEG induced transcrip-

tional downregulation of its target SDF-1, reduced expression of

genes known to be regulators of angiogenesis, cell growth, cyto-

kine production, vessel development and integrin-mediated cell

adhesion, and downregulated protein kinase activity; in contrast,

heat-shock proteins were upregulated (Figure S3B; p < 0.05).

Genes were categorized using dChip software; see Supple-

mental Information for a detailed gene list.

To understand the in vivo distribution and localization of ola-

PEG in areas of MM cell growth, we injected (i.v.) mice that har-

bor MM.1S-GFP+ tumors with Alexa Fluor (AF) 647-conjugated

ola-PEG and used live confocal imaging to determine the spatial

localization of ola-PEG in BM niches that were colonized by

MM cells; results documented that ola-PEG penetrated into

BM areas that harbored MM cells (Figure S3C).

Ola-PEGMobilizes andChemosensitizes BM-Colonizing
MM Cells In Vivo
Because disruption of the SDF-1 gradient between BM and pe-

ripheral blood leads to the release of HSCs and lymphocytes into

the circulation (Bleul et al., 1996; Dalakas et al., 2005; Dar et al.,

2011; Kim and Broxmeyer, 1998; Kim et al., 1998), we argued

that SDF-1 neutralization may lead to the release of MM cells

from the BM into the peripheral circulation.

Whenmicewith establishedMMwere treatedwith ola-PEG for

5 weeks, we observed reduced numbers of MM cells within the

BM niches, along with increased numbers of MM cells in the cir-

culation (Figure S4A). These results indicate that ola-PEG has an

impact on the interaction of MM cells with the BM milieu in vivo,

leading to mobilization of MM cells. We therefore evaluated the

effect of ola-PEG as monotherapy, or as a combination therapy

with bortezomib, on tumor progression and MM cell dissemina-

tion in vivo. Control mice, andmice treatedwith ola-PEG as a sin-

gle agent, showed similar growth rates for MM.1S-GFP+/Luc+,

whereas mice treated with a combination of ola-PEG and borte-

zomib presented with a significant reduction of tumor burden;

this reduction was more pronounced when compared to mice

treated with bortezomib as a single agent (Figure 6A). These

data were supported by the finding that ola-PEG and bortezomib

work synergistically in inhibiting MM cell proliferation in vitro,

when tested on a panel of MM cell lines (Figures S5A–SD).

We next interrogated whether ola-PEG and bortezomib also

act synergistically in modulating MM cell dissemination to



Figure 5. Ola-PEG-Dependent Neutralization of SDF-1 Inhibits Dissemination of MM Cells from Bone-to-Bone

(A–D) Ola-PEG-dependent inhibition of SDF-1 inhibited in vivo colonization of MM cells (GFP+5TGM1; GFP+MM.1S), originating at a primary bone marrow site, to

distant bone niches, as demonstrated by flow cytometry (GFP+) and immunostaining for murine (m) and human (h)-CD138. H.E. indicates hematoxylin-eosin

staining (203; 403). Mice were euthanized when signs of paralysis were detected. Error bars indicate SD in (B) and (D). P indicates p values.
distant BM niches in vivo, and, if so, whether this is due to the

ability of ola-PEG to modulate cell adhesion. In vivo confocal

microscopy revealed significant MM cell homing to the BM in
control mice, whereas ola-PEG-treated mice presented with a

lower number of MM cells within the whole skull BM area that

was imaged (Figure 6B). These observations point to two
Cell Reports 9, 118–128, October 9, 2014 ª2014 The Authors 123



Figure 6. In Vivo Relevance of Ola-PEG:

Effect on MM Tumor Growth

(A) SCID/Bg mice were injected (i.v.) with 5 3 106

MM.1S-GFP+/Luc+ cells. Subsequently, mice

were treated with vehicle (control), bortezomib

(0.5 mg/kg, twice/week; i.p.), or ola-PEG

(20 mg/kg, every other day; s.c.), alone or in

combination (ola-PEG followed by bortezomib)

(n = 5 per group). Tumor burden was detected by

bioluminescence imaging, at different time points

after MM cell injection (t0: second week; t1: fourth

week; t2: fifth week). Error bars indicate SD. P in-

dicates p value.

(B) Five weeks after MM cell inoculation, MM cell

presence in BM structures of the skull was evalu-

ated by intravital confocal microscopy (GFP+ MM

cells: green; Evans-Blue-positive blood vessels:

red). Specific BM niches are highlighted, and

relative magnification and 3D reconstruction are

provided for each panel.

(C) The presence of MM.1S-GFP+ cells ex vivo

on femur tissues was detected by immunofluo-

rescence. One representative image for one

mouse from each group is shown (403). For rela-

tive quantification, see Figure S5E.

(D) Primary MM BM-MSCs were treated with ola-

PEG for 10 hr and subsequently cultured in the

presence of MM.1S cells for 8 hr. MM.1S cells

were then harvested, and cell lysates were sub-

jected to western blotting, with use of antibodies

against p-ERK1/2, ERK1/2, p-cofilin, p-paxillin,

p-Akt, Akt, p-Src, p-S6R, p-GSK3, and tubulin.

MM.1S cells cultured in the absence of MM BM-

MSCs were used as control.
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possibilities: (1) that the BM of ola-PEG-treated mice is less

receptive to MM cells, and (2) that the reduction in number of

MM cells is due to an increase in mobilization of MM cells from

the BM into the peripheral blood. Analysis of bortezomib-treated

mice showed a significant reduction of MM cells, and this effect

was even more significant with the combination of ola-PEG and

bortezomib. These results were confirmed ex vivo, by quanti-

fying the presence of MM cells in the femurs of treatedmice (Fig-

ures 6C and S5E) and were further supported by the demonstra-

tion of synergism between ola-PEG and bortezomib in inhibiting

the adhesion of MM cells to primary MM BM-MSCs in vitro (Fig-

ures S6A–S6D).

The above findings were further corroborated at the protein

level: primary MM BM-MSCs were pretreated with ola-PEG

and subsequently cultured in the presence of MM cells; both

MM and BM-MSCs cells were then exposed to ola-PEG or bor-

tezomib, used alone or as a combinatory regimen. Ola-PEG in-

hibited the BM-MSC-dependent upregulation of p-ERK, p-Akt,

and p-Src in MM cells, and also similarly affected Akt-down-

stream-targeted proteins (Figure 6D). Notably, ola-PEG treat-

ment exerted a stronger effect when used in combination

with bortezomib: in particular, ola-PEG was able to overcome

the bortezomib-dependent activation of p-AKT, together with a

more pronounced inhibition of Akt-downstream-targeted pro-

teins (p-S6R; p-GSK3). In addition, proteins such as cofilin and

paxilin, which are involved in the modulation of cell adhesion,

were also modulated by the ola-PEG/bortezomib treatment

(Figure 6D).

DISCUSSION

In 1889, Stephan Paget presented the ‘‘seed-and soil’’ hypothe-

sis for cancer metastasis, which states that certain malignant

cells (seed) have a high and specific affinity for the milieu of spe-

cific organs (soil), and that the metastatic phenotype transpires

only when the tumor cell and the surrounding microenvironment

are compatible (Paget, 1889). In support of this hypothesis,

a growing body of evidence now points to an essential role

of the tumor microenvironment as a critical regulator of tumor

cell metastasis, which facilitates the homing and expansion of

the tumor clone from the primary neoplasm to distant organs

(Valastyan and Weinberg, 2011). Along these lines, the recep-

tivity of the BM milieu and its components is essential for tumor

cells that preferentially metastasize to the bones, as reported for

breast, prostate, and lung cancer (Bryden et al., 2002; Devys

et al., 2001; Karnoub and Weinberg, 2006–2007; Smith et al.,

2004). A key factor in this cell trafficking network within the BM

is the interaction of the chemokine SDF-1 (CXCL12) and its

receptor CXCR4 (Alsayed et al., 2007; Azab et al., 2009; Dar

et al., 2011).

The development of therapeutic agents that prevent or delay

metastasis has been hampered by many limitations and failures;

indeed, a number of antineoplastic agents that are effective

on primary tumor sites do not display the same ability to inhibit

the proliferation of disseminated cancer cells, and there is

a pressing need to develop novel therapeutic strategies that

disrupt the permissive metastatic niche and thus reduce the

capacity of cancer cells to home to and engraft in these areas.
Agents such as bisphosphonates, anti-RANK, and TGF-b inhib-

itors such as LY2157299 show promising activity, but none

demonstrates significant clinical activity in preventing or delay-

ing metastases. Antiangiogenic molecules are implicated in in-

hibiting the process of metastasis; however, recent evidence

shows that such drugs may in fact paradoxically increase meta-

static potential, due to the induction of hypoxia within the tumor

mass (Ebos et al., 2009).

Here, we use MM as a model of bone-to-bone cell dissemina-

tion. We first demonstrate that SDF-1 colocalizes in areas of the

BM where metastasis occurs, not only in multiple epithelial tu-

mors, but also in advanced stages of MM. Indeed, by comparing

early precursor stages (such as MGUS) to late, disseminated

stages of advancedMM, we were able to document a significant

increase in SDF-1 levels in the BM with advanced disease.

We also report on the identification and characterization of ola-

PEG, a PEGylated L-RNA Spiegelmer that binds the chemokine

SDF-1 with high affinity and selectivity. Our cell-based studies

show that ola-PEG potently inhibits SDF-1 action, and thereby

affects downstream signaling in tumor cells. Most interestingly,

our data show that ola-PEG-dependent neutralization of SDF-1

modulates the premetastatic BM niche in vivo and thus inhibits

MM tumor progression and prolonged survival, compared

to AMD3100-treated mice. SDF-1 inhibition also affects the

BM gene expression signature by altering regulators of angio-

genesis, adhesion, and proliferation that collectively modify the

BM niche; significantly reduces the homing of injected MM cells

to the BM of SCID/Bgmice; and decreasesMMcell bonemetas-

tases in vivo.Whether these effects are due to inhibition of SDF-1

signaling in the tumor cell itself, or due to changes in the stroma

and its associated gene expression, has yet to be determined.

Nevertheless, our findings clearly document a therapeutic effect

of ola-PEG in aMMxenograft model of established disease. Ola-

PEG colocalizes in areas of high tumor burden within the BM and

disrupts the interaction of MM cells with the BM niches, as evi-

denced by its influence on diminishing tumor mobilization, hom-

ing, and growth within the BM niches. In addition, ola-PEG also

chemosensitizes MM cells to bortezomib, despite the fact that it

(ola-PEG) has no single-agent activity on the tumor cells, indi-

cating that the activity of ola-PEG is specific to the niche

and its interaction with SDF-1. Thus, combinations of ola-PEG

with other chemotherapeutic agents are also likely to lead to

synergistic effects.

In conclusion, our data suggest that the anti-SDF-1 Spie-

gelmer ola-PEG represents an agent that successfully targets

the interaction between BM niches and tumor cells, thereby

preventing or disrupting BM colonization byMMcells and poten-

tially also by other bone-metastasizing tumor cells.
EXPERIMENTAL PROCEDURES

Cells

Primary BM-MSCswere obtained fromMMpatients: approval for these studies

was obtained from the Institutional Review Board of the Dana-Farber Cancer

Institute. Informed consent was obtained from all patients and healthy volun-

teers, in accordance with the Declaration of Helsinki protocol. BM-MSCs

were devoid of hematopoietic cells (CD34�, CD138�, CD45�, CD14�) and
were positive for markers (CD73+; CD90+; CD105+; CD106+) that indicate their

multipotent MSC phenotype, as previously reported (Roccaro et al., 2013).
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Luciferase (luc)-expressing MM.1S-GFP/luc cell lines were generated by retro-

viral transduction ofMM.1Swith thepGC-gfp/luc vector (kind gift ofDr. A. Kung,

Dana-Farber Cancer Institute). The MM cell lines MM.1S, RPMI.8226, OPM2,

andU266,were also used. Jurkat cellswereobtained fromDSMZ.GFP+5TGM1

cells were kindly provided by Dr. G.D. Roodman (Indiana University).

In Vitro Selection and Synthesis of Ola-PEG

The oligonucleotide sequence of ola-PEG (50-GCG UGG UGU GAU CUA GAU

GUA UUG GCU GAU CCU AGU CAG GUA CGC-30 ) was identified after 18

selection rounds, by screening a library of approximately 1015 different RNA

oligonucleotides (carrying a 34-nt-long random region) against biotinylated

human SDF-1 in the all-D-configuration. The affinity of RNA libraries and ap-

tamers to D-SDF-1 was determined by use of pull-down binding assays with

radioactively labeled RNA. All oligonucleotides were synthesized at NOXXON

PharmaAG, following standard synthesis protocols, and PEGylated Spiegelm-

ers were synthesized as described (Hoffmann et al., 2011).

Use of Surface Plasmon Resonance for Analyzing the Binding and

Selectivity of Interaction between Ola-PEG and SDF-1

Surface plasmon resonance (SPR) measurements were carried out at physio-

logical conditions on aBiacore 2000 system, with use of CM4 sensor chips and

immobilized SDF-1; a reference flow cell (activated and then blocked) on the

same sensor chip served as a control. Data were analyzed, and KDwere calcu-

lated with the BIAevaluation 3.1.1 software, using a modified Langmuir 1:1

stoichiometric fitting algorithm. Each measurement was done at least three

times on different days. Selectivity data were plotted using the Prism 5.04

software.

Cell-Based Assays for Ola-PEG Characterization

A detailed description of the methods is provided in the Supplemental

Experimental Procedures. Briefly, CXCR4 internalization was determined in

Jurkat cells using phycoerythrin (PE)-labeled anti-CXCR4 and flow cytometry.

CXCR7 signaling was analyzed with use of a b-arrestin complementation

assay and a reporter cell line. MAP-kinase activation was studied in

CHO-K1 cells transfected with a plasmid that codes for human CXCR4

(NM_003467.2); immunoblotting was performed with anti-MAP-K and anti-

phospho-MAP-K. Chemotaxis assays were carried out with Jurkat cells in

Corning Transwell plates (5 mm pores) for 3 hr. Prior to the addition of cells

to the upper compartment, SDF-1 and various concentrations of ola-PEG

were preincubated for 20–30 min in the lower compartment; migrated cells

were quantified with resazurin.

Pharmacokinetics of Ola-PEG

A detailed description of the pharamcokinetic data is provided in the Supple-

mental Experimental Procedures.

Reagents

Bortezomib was obtained from Hospital Pharmacy, diluted in DMSO, and

stored at �20�C until use and then thawed and diluted in culture medium

immediately before use. The maximum final concentration of DMSO (<0.1%)

did not affect cell proliferation and did not induce cytotoxicity on the cell lines

tested (data not shown). AMD3100 was obtained from Sigma-Aldrich.

Immunoblotting

MMcells, cultured in presence or absence of SDF-1, were harvested and lysed

using lysis buffer (Cell Signaling Technology) supplemented with 5 mM NaF,

2 mM Na3VO4, 1 mM phenylmethanesulfonylfluoride, 5 mg/ml leupeptine,

and 5 mg/ml aprotinin. Whole-cell lysates were subjected to SDS-PAGE and

transferred to polyvinylidene fluoride membrane (Bio-Rad). Immunoblotting

was done with antibodies against phospho(p)-ERK, ERK, p-cofilin, p-Akt,

Akt, p-Src, p-S6R, p-GSK3, p-paxillin, p-cofilin, and a-tubulin (Cell Signaling

Technology).

ELISA

SDF-1 levels were determined with use of an SDF-1 ELISA (Human SDF-1

immunoassay, R&D Systems), according to the manufacturer’s protocol.
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Gene Expression Profile

Gene expression profiling was performed on murine BM, using the Mouse

Genome 430 2.0 Array (NCBI Gene Expression Omnibus [GEO] accession

number: GSE42257). Untreated (n = 3) and ola-PEG-treated (n = 3) mice

were compared, and differentially expressed genes were classified with use

of dChip software (1.5-fold change; p < 0.05): a detailed list of genes is pro-

vided in the Supplemental Information.

In Vivo Studies

SCID/Bg mice were used for all in vivo studies. Six week-old female SCID-Bg

mice (Charles River Laboratories) were treated, monitored, and sacrificed

in accordance with a protocol approved by the Dana-Farber Cancer Institute

Animal Care and Use Committee.

Intravital confocal microscopy was performed as reported (Colmone et al.,

2008; Roccaro et al., 2013), using a Zeiss 710 confocal system (Carl Zeiss

Microimaging) on an upright Examiner stand with a custom stage. Briefly, a

skin flap was made in the scalp to expose the underlying dorsal skull surface;

high-resolution images with cellular detail were obtained through the intact

skull, using a 103 0.45 numerical apeture (NA) Plan-Apo objective (Carl Zeiss

Microimaging). Images were acquired at multiple imaging depths (up to

250 mm from the skull surface) and were merged with use of a maximum inten-

sity z-projection. GFP was excited with the 488 nm line on an Argon laser.

Blood vessels were imaged using Evans Blue (Sigma-Aldrich) excited with a

633 nm laser. Emission signals were collected with use of the Zeiss internal

confocal Quasar detectors. To localize SDF-1 within the BM niches, SCID/

Bg mice were injected (i.v.) with 5 3 106 MM.1S-GFP+ cells. After 3 weeks,

Alexa Fluor (AF) 633-conjugated anti-SDF-1a (Ab) (Santa Cruz Biotechnology)

was administered i.v. (Colmone et al., 2008), and, 4 hr later, intravital confocal

microscopy was used to visualize mouse skull BM niches. Evans Blue was

injected i.v. to detect vessels.

To visualize tumor growth in vivo, mice were injected with 75mg/kg of Lucif-

erin (Xenogen); 3 min later, tumor growth was detected by bioluminescence,

using a Xenogen In Vivo Imaging System (Caliper Life Sciences), as reported

(Roccaro et al., 2009).

For the in vivo metastasis model, bone chips were loaded with either murine

(GFP+ 5TGM1) or human (GFP+ MM.1S) MM cells (2 3 106 cells/bone). Two

bones were implanted subcutaneously into SCID/Bg mice, which were pre-

treated with vehicle or ola-PEG (20 mg/kg; every other day; s.c.) for 3 weeks.

Mice were euthanized once signs of limb paralysis became evident. MM cells

were harvested from one host femur and evaluated by flow cytometry for GFP

positivity; the second host femur was used for immunostaining with murine

and human anti-CD138, to detect metastasized 5TGM1 and MM.1S cells,

respectively.

To evaluate the effects of the bortezomib and ola-PEG combinatory regimen

in vivo, SCID/Bgmice were injected (i.v.) with 53 106MM.1S-GFP+/Luc+ cells;

after 2 weeks, treatment was initiated with either vehicle (control), bortezomib

(0.5 mg/kg, twice/week; i.p.), ola-PEG (20 mg/kg, every other day; s.c.), or

a combination of ola-PEG and bortezomib (n = 5 per group). Tumor burden

was detected with use of bioluminescence imaging at different time points

following the MM cell injection. Six weeks after MM cell inoculation, intravital

confocal microscopy was used for a detailed evaluation of MM cell presence

in BM structures of the skull. Evans Blue was injected i.v. to visualize vessels,

and immunofluorescence was used to detect MM.1S-GFP+ cells ex vivo on

femur tissues; nuclei were stained using DAPI.

Tissue Immunofluorescence

Sections through the femurs of mice were immunostained as described

(Hsieh et al., 2012), to detect MM.1S-GFP+ cells. Nuclei were stained

with DAPI. Slides were analyzed on a fluorescence microscope (Nikon

TE2000-E; objective 403 plan fluor 0.75 NA). MM.1S-GFP+ cells were

counted in four separate fields per slide. Images were taken on a Hama-

matsu OrcaER camera, with NIS-Element software. ImageJ was used to

merge channels.

In Vitro Studies

DNA synthesis was assessed by [3H]-thymidine ([3H]-TdR; PerkinElmer)

uptake, as described (Roccaro et al., 2010; Sacco et al., 2011). Adhesion



of MM cells to primary MM bone marrow MSCs was evaluated by an in vitro

adhesion assay, using Calcein AM-labeling ofMMcells, with degree of fluores-

cence measured on a spectrophotometer (485–520), as described (Roccaro

et al., 2010). Migration of MM cells was evaluated as reported (Roccaro

et al., 2010).

SDF-1 Knockdown

SDF-1 knockdown in primary MMBM-MSCs was achieved with use of a tetra-

cycline-inducible pTRIPz-Turbo-RFP vector (Thermo Scientific) containing the

target sequence (clones 111678, 227310) or scramble control, according to

manufacturer’s specifications. Transduction efficiency was determined by

evaluating the proportion of cells expressing red fluorescent protein (RFP).

SDF-1 knockdown efficiency was validated by detecting levels of SDF-1 in

the conditioned medium of infected cells.

Statistical Analyses

Thep values for the in vitro assayswere based on t tests (two-tailed;a 0.05), and

areprovided foreachfigure.Drugsynergismwasanalyzedby isobologramanal-

ysis, using the CalcuSyn software program (Biosoft), as described (Roccaro

et al., 2008, 2010; Sacco et al., 2011). The Kaplan-Meier curve was obtained

using GraphPad Prism, and p values were calculated based on log-rank test.
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