84 research outputs found
Optimizing site-specific specimen preparation for Atom Probe Tomography by using hydrogen for visualizing radiation-induced damage
Atom probe tomography (APT) is extensively used to measure the local
chemistry of materials. Site-specific preparation via a focused ion beam (FIB)
is routinely implemented to fabricate needle-shaped specimens with an end
radius in the range of 50 nm. This preparation route is sometimes supplemented
by transmission Kikuchi diffraction (TKD) to facilitate the positioning of a
region of interest sufficiently close to the apex. Irradiating the specimen
with energetic electrons and ions can lead to the generation of vacancies and
even amorphization of the specimen. These extrinsically created vacancies
become crucial for probing the hydrogen or deuterium distribution since they
act as a strong trap. Here, we investigated the feasibility of site-specific
preparation of a two-phase medium-Mn steel containing austenite (fcc) and
ferrite (bcc). Following gaseous charging of APT specimens in deuterium (D2),
clusters enriched by up to 35 at.% D, are imaged after Pt deposition,
conventional Ga-FIB preparation, and TKD conducted separately. These D-rich
clusters are assumed to arise from the agglomeration of vacancies acting as
strong traps. By systematically eliminating these preparation-induced damages,
we finally introduce a workflow allowing for studying intrinsic traps for H/D
inherent to the material
Quantification of the Phase Transformation Kinetics in High Chromium Cast Irons Using Dilatometry and Metallographic Techniques
Further development of high chromium cast irons (HCCI) is based on tailoring the microstructure, necessitating an accurate control over the phase transformation and carbide precipitation temperatures and can be achieved by thermal treatments (TT). To understand the underlying mechanisms controlling the transformation kinetics during the different stages of the TT, it is imperative to adjust the TT parameters to have information of the transformations occurring during non-thermal and isothermal heating cycles, since proper selection of the TT parameters ensures the optimum use of the alloying elements. In this work, the boundaries of the phase transformations for a HCCI containing 26 wt pct Cr for different cooling rates (continuous cooling transformation, CCT, diagram) were established by applying dilatometric measurements. Based on the CCT diagram, a temperature-time-transformation (TTT) diagram was constructed by isothermally holding the samples until complete phase transformation. For determining the initiation and finishing of the transformation, the lever rule assisted by derivatives was applied. The phases present after transformation were determined by combining X-ray diffraction (XRD) and metallographic characterization using optical microscopy (OM) and scanning electron microscopy (SEM). Finally, the data obtained from the dilatometer was experimentally verified by isothermally heat treating some samples using laboratory furnaces. The transformed phase fraction from OM and SEM images was then correlated to the fraction obtained from the TTT diagram
Rugged optical mirrors for Fourier transform spectrometers operated in harsh environments
The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a number of Fourier transform spectrometers (FTSs) that measure trace gases in the atmosphere by observing solar spectra. To guide the sunlight into the FTS, a solar tracker has to be placed outside. This device needs high-quality optical mirrors with good reflectance in the near and mid-infrared. More and more FTS stations are operated in remote locations with harsh environments. Optical mirrors are usually made for laboratory conditions and might not last very long there. At the TCCON site on Ascension Island which is operated by the Max Planck Institute for Biogeochemistry (MPIBGC), several mirrors from different optical manufacturers were destroyed within weeks. To continue operation, the MPI-BGC had to develop rugged mirrors that could sustain the harsh conditions for months or even years. While commercially available mirrors are typically made from a substrate covered with a thin reflective coating, these rugged mirrors were made from stainless steel with no additional coating. Except for their lower reflectance (which can easily be compensated for), their optical properties are comparable to existing mirrors. However, their rugged design makes them mostly immune to corrosion and scratching. Unlike most coated mirrors, they can also be cleaned easily
Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels
This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation
- …