243 research outputs found

    The GraRS regulatory system controls Staphylococcus aureus susceptibility to antimicrobial host defenses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modification of teichoic acids with D-alanine by the products of the <it>dlt </it>operon protects Gram-positive bacteria against major antimicrobial host defense molecules such as defensins, cathelicidins, myeloperoxidase or phospholipase. The <it>gra</it>RS regulatory genes have recently been implicated in the control of D-alanylation in <it>Staphylococcus aureus</it>.</p> <p>Results</p> <p>To determine the impact of the GraRS regulatory system on resistance to antimicrobial host defense mechanisms and virulence of <it>S. aureus</it>, we compared inactivation of <it>S. aureus </it>SA113 wild type and its isogenic <it>gra</it>RS deletion mutant by the human cathelicidin LL-37 or human neutrophil granulocytes <it>in vitro</it>, and the ability to cause infection <it>in vivo</it>. We show here that <it>gra</it>RS deletion considerably alters bacterial surface charge, increases susceptibility to killing by human neutrophils or the defense peptide LL-37, and attenuates virulence of <it>S. aureus </it>in a mouse infection model.</p> <p>Conclusion</p> <p>Our results indicate that <it>S. aureus </it>can regulate its surface properties in order to overcome innate host defenses.</p

    Selective killing of human immunodeficiency virus infected cells by non-nucleoside reverse transcriptase inhibitor-induced activation of HIV protease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current antiretroviral therapy against human immunodeficiency virus (HIV-1) reduces viral load and thereby prevents viral spread, but it cannot eradicate proviral genomes from infected cells. Cells in immunological sanctuaries as well as cells producing low levels of virus apparently contribute to a reservoir that maintains HIV persistence in the presence of highly active antiretroviral therapy. Thus, accelerated elimination of virus producing cells may represent a complementary strategy to control HIV infection. Here we sought to exploit HIV protease (PR) related cytotoxicity in order to develop a strategy for drug induced killing of HIV producing cells. PR processes the viral Gag and Gag-Pol polyproteins during virus maturation, but is also implicated in killing of virus producing cells through off-target cleavage of host proteins. It has been observed previously that micromolar concentrations of certain non-nucleoside reverse transcriptase inhibitors (NNRTIs) can stimulate intracellular PR activity, presumably by enhancing Gag-Pol dimerization.</p> <p>Results</p> <p>Using a newly developed cell-based assay we compared the degree of PR activation displayed by various NNRTIs. We identified inhibitors showing higher potency with respect to PR activation than previously described for NNRTIs, with the most potent compounds resulting in ~2-fold increase of the Gag processing signal at 250 nM. The degree of enhancement of intracellular Gag processing correlated with the compound's ability to enhance RT dimerization in a mammalian two-hybrid assay. Compounds were analyzed for their potential to mediate specific killing of chronically infected MT-4 cells. Levels of cytotoxicity on HIV infected cells determined for the different NNRTIs corresponded to the relative degree of drug induced intracellular PR activation, with CC<sub>50 </sub>values ranging from ~0.3 μM to above the tested concentration range (10 μM). Specific cytotoxicity was reverted by addition of PR inhibitors. Two of the most active compounds, VRX-480773 and GW-678248, were also tested in primary human cells and mediated cytotoxicity on HIV-1 infected peripheral blood mononuclear cells.</p> <p>Conclusion</p> <p>These data present proof of concept for targeted drug induced elimination of HIV producing cells. While NNRTIs themselves may not be sufficiently potent for therapeutic application, the results provide a basis for the development of drugs exploiting this mechanism of action.</p

    Assessment of Confounding Factors Affecting the Tumor Markers SMRP, CA125, and CYFRA21-1 in Serum

    Get PDF
    The purpose of this analysis was to evaluate if serum levels of potential tumor markers for the diagnosis of malignant mesothelioma and lung cancer are affected by confounding factors in a surveillance cohort of workers formerly exposed to asbestos. SMRP, CA125, and CYFRA21-1 concentrations were determined in about 1,700 serum samples from 627 workers formerly exposed to asbestos. The impact of factors that could modify the concentrations of the tumor markers was examined with linear mixed models. SMRP values increased with age 1.02-fold (95% CI 1.01–1.03) and serum creatinine concentration 1.32-fold (95% CI 1.20–1.45). Levels differed by study centers and were higher after 40 years of asbestos exposure. CA125 levels increased with longer storage of the samples. CYFRA21-1 values correlated with age 1.02-fold (95% CI 1.01–1.02), serum creatinine 1.21-fold (95% CI 1.14–1.30) and varied by study centers due to differences in sample handling. Tumor marker concentrations are influenced by subject-related factors, sample handling, and storage. These factors need to be taken into account in screening routine

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci

    Get PDF
    It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified d-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound d-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants

    Iterative solution and preconditioning for the tangent plane scheme in computational micromagnetics

    Get PDF
    The tangent plane scheme is a time-marching scheme for the numerical solution of the nonlinear parabolic Landau–Lifshitz–Gilbert equation, which describes the time evolution of ferromagnetic configurations. Exploiting the geometric structure of the equation, the tangent plane scheme requires only the solution of one linear variational form per time-step, which is posed in the discrete tangent space determined by the nodal values of the current magnetization. We develop an effective solution strategy for the arising constrained linear systems, which is based on appropriate Householder reflections. We derive possible preconditioners, which are (essentially) independent of the time-step, and prove linear convergence of the preconditioned GMRES algorithm. Numerical experiments underpin the theoretical findings

    Development of a Stable Respiratory Syncytial Virus Pre-Fusion Protein Powder Suitable for a Core-Shell Implant with a Delayed Release in Mice:A Proof of Concept Study

    Get PDF
    Currently, there is an increasing interest to apply pre-fusion (pre-F) protein of respiratory syncytial virus (RSV) as antigen for the development of a subunit vaccine. A pre-F-containing powder would increase the flexibility regarding the route of administration. For instance, a pre-F-containing powder could be incorporated into a single-injection system releasing a primer, and after a lag time, a booster. The most challenging aspect, obtaining the booster after a lag time, may be achieved by incorporating the powder into a core encapsulated by a nonporous poly(dl-lactic-co-glycolic acid) (PLGA) shell. We intended to develop a stable freeze-dried pre-F-containing powder. Furthermore, we investigated whether incorporation of this powder into the core-shell implant was feasible and whether this system would induce a delayed RSV virus-neutralizing antibody (VNA) response in mice. The developed pre-F-containing powder, consisting of pre-F in a matrix of inulin, HEPES, sodium chloride, and Tween 80, was stable during freeze-drying and storage for at least 28 days at 60 degrees C. Incorporation of this powder into the core-shell implant was feasible and the core-shell production process did not affect the stability of pre-F. An in vitro release study showed that pre-F was incompletely released from the core-shell implant after a lag time of 4 weeks. The incomplete release may be the result of pre-F instability within the core-shell implant during the lag time and requires further research. Mice subcutaneously immunized with a pre-F-containing core-shell implant showed a delayed RSV VNA response that corresponded with pre-F release from the core-shell implant after a lag time of approximately 4 weeks. Moreover, pre-F-containing core-shell implants were able to boost RSV VNA titers of primed mice after a lag time of 4 weeks. These findings could contribute to the development of a single-injection pre-F-based vaccine containing a primer and a booster

    Toward a Li‐Ion Battery Ontology Covering Production and Material Structure

    Get PDF
    An ontology for the structured storage, retrieval, and analysis of data on lithium-ion battery materials and electrode-to-cell production is presented. It provides a logical structure that is mapped onto a digital architecture and used to visualize, correlate, and make predictions in battery production, research, and development. Materials and processes are specified using a predetermined terminology; a chain of unit processes (steps) connects raw materials and products (items) of battery cell production. The ontology enables the attachment of analytical methods (characterization methods) to items. Workshops and interviews with experts in battery materials and production processes are conducted to ensure that the structure is conformable both for industrial-scale and laboratory-scale data generation and implementation. Raw materials and intermediate products are identified and defined for all steps to the final battery cell. Steps and items are defined based on current standard materials and process chains using terms that are in common use. Alternative structures and the connection of the ontology to other existing ontologies are discussed. The contribution provides a pragmatic, accessible way to unify the storage of materials-oriented lithium-ion battery production data. It aids the linkage of such data with domain knowledge and the automation of data analysis in production and research
    corecore