66 research outputs found

    Macroscopic control of plasma polymerization processes

    Get PDF
    Plasma polymerization covers a broad range of plasma deposits from soft to hard coatings. Nanoscale coatings are formed within a dry and eco-friendly process on different substrate materials and structures. To gain a deeper insight into plasma polymerization, a macroscopic approach using the concept of chemical quasi-equilibria might be useful. Following this macroscopic approach, the reaction parameter power input per gas flow W/F, which represents the specific energy invested per particle within the active plasma zone, solely determines the mass deposition rate. Hence, plasma polymerization can be described by measuring the deposited mass and examining the power input and gas flow which contributes to it. Thus, the control, investigation, and up-scaling of plasma polymerization processes are enabled. Different examples are given to make use of the macroscopic approac

    Tailor-Made Silver Release Properties of Silver-Containing Functional Plasma Polymer Coatings Adjusted Through a Macroscopic Kinetics Approach

    Get PDF
    Combining a functional plasma polymer matrix with antibacterially active silver (Ag) within a nanocomposite structure allows secure production and applications in various fields, especially in the medical sector. Therefore, nitrogen or oxygen containing hydrocarbon plasma polymers and Ag nanoparticles were simultaneously deposited. Functional groups such as amino or carboxylic groups as well as an adjusted amount of Ag can be incorporated into the growing films by controlling the plasma deposition properties. For this purpose, macroscopic kinetics were used to characterise the deposition behaviour also as a base for possible industrial up-scaling. XPS and ICP-OES were used to analyse the chemical composition of the polymer-Ag nanocomposites and the Ag content which could be incorporated depending on the plasma process conditions. Finally, the Ag release was determined in bi-distilled water for classification and comparison with the antibacterial properties. The antibacterial effect of the polymer-Ag nanocomposites was proofed with the gram− strain Pseudomonas aeruginosa PAO1 and the gram+ strain Staphylococcus aureus (ST12 Group) showing a clear efficacy dependence on the amount of released Ag and the possibility for tailor-made antibacterial active plasma film

    Plasma functionalization of textiles: Specifics and possibilities

    Get PDF
    Plasma technology offers many interesting possibilities for the production of high-value-added textiles. Nevertheless, textiles can have a considerable structural and chemical complexity, and their properties must be taken into account for the implementation of plasma processes. The influences of some of these properties are highlighted through several examples of recent interesting applications, such as the metallization of polyester yarns, the enhancement of fabric moisture wicking and the surface functionalization with plasma polymerizatio

    Plasma-deposited AgOx-doped TiOx coatings enable rapid antibacterial activity based on ROS generation

    Get PDF
    Abstract To enable a rapid-acting antibacterial mechanism without the release of biocidal substances, TiO2 catalysts have been considered based on the generation of reactive oxygen species (ROS). Doping with dissimilar metals generates electron-hole pairs with narrow band gaps promoting the production of ROS. Here, plasma technology is investigated to deposit Ag nano islets on defective TiOx films, stabilized by plasma postoxidation suppressing Ag ion release. Importantly, ROS generation is maintained upon storage in the dark yet with diminishing efficacy; however, it can be restored by exposure to visible light. The rapid-acting antibacterial properties are found to strongly correlate with ROS generation, which can even be maintained by functionalization with hydrophobic plasma polymer films. The cytocompatible coatings offer promising applications for implants and other medical devices

    Radiotherapy for hormone-sensitive prostate cancer with synchronous low burden of distant metastases.

    Get PDF
    PURPOSE The DEGRO Expert Commission on Prostate Cancer has revised the indication for radiation therapy of the primary prostate tumor in patients with synchronous distant metastases with low metastatic burden. METHODS The current literature in the PubMed database was reviewed regarding randomized evidence on radiotherapy of the primary prostate tumor with synchronous low metastatic burden. RESULTS In total, two randomized trials were identified. The larger study, the STAMPEDE trial, demonstrated an absolute survival benefit of 8% after 3 years for patients with low metastatic burden treated with standard of care (SOC) and additional radiotherapy (RT) (EQD2 ≤ 72 Gy) of the primary tumor. Differences in the smaller Horrad trial were not statistically significant, although risk reduction in the subgroup (< 5 bone metastases) was equal to STAMPEDE. The STOPCAP meta-analysis of both trials demonstrated the benefit of local radiotherapy for up to 4 bone lesions and an additional subanalysis of STAMPEDE also substantiated this finding in cases with M1a-only metastases. CONCLUSION Therefore, due to the survival benefit after 3 years, current practice is changing. New palliative SOC is radiotherapy of the primary tumor in synchronously metastasized prostate cancer with low metastatic burden (defined as ≤ 4 bone metastases, with or without distant nodes) or in case of distant nodes only detected by conventional imaging

    Plasmagestützte Prozesse zur Abscheidung neuer Hartstoffschichten

    No full text
    • …
    corecore