256 research outputs found
Fully parameterized macromodeling of S-parameter data by interpolation of numerator & denominator
A robust approach for parametric macromodeling of tabulated frequency responses is presented. An existing technique is modified in such a way that interpolation is performed at the numerator and denominator level, rather than the transfer function level. This enhancement ensures that the poles of the parametric macromodel are fully parameterized. It strengthens the modeling capabilities and improves the model compactness
Symbolic macromodeling of parameterized S-parameter frequency responses
This paper presents an evolutionary algorithm for symbolic macromodeling of parameterized frequency responses. The method does not require an a priori specification of the multivariate functional form or complexity of the model. Numerical results are shown to illustrate the performance of the technique
Special issue : 'improving energy efficiency through data-driven modeling, simulation and optimization'
In October 2014, EU leaders agreed upon three key targets for the year 2030: a reduction of at least 40% in greenhouse gas emissions, a saving of at least a 27% share for renewable energy, and at least a 27% improvement in energy efficiency [...
Towards efficient multiobjective optimization: multiobjective statistical criterions
The use of Surrogate Based Optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, "real-world" problems often consist of multiple, conflicting objectives leading to a set of equivalent solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of making those decisions upfront). Most of the work in multiobjective optimization is focused on MultiObjective Evolutionary Algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as MultiObjective Surrogate-Based Optimization (MOSBO), may prove to be even more worthwhile than SBO methods to expedite the optimization process. In this paper, the authors propose the Efficient Multiobjective Optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the expected improvement and probability of improvement criterions to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II and SPEA2 multiobjective optimization methods with promising results
Robust macromodeling of frequency responses with outliers
This paper introduces a robust Vector Fitting algorithm for macromodeling of measured of simulated frequency responses with outliers. The use of a new frequency-dependent weighting scheme ensures that the complex fitting error is minimized in the L1 sense, rather than the L2 sense. Numerical results indicate that this approach leads to more accurate results
Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization
The use of surrogate based optimization (SBO) is widely spread in engineering design to reduce the number of computational expensive simulations. However, "real-world" problems often consist of multiple, conflicting objectives leading to a set of competitive solutions (the Pareto front). The objectives are often aggregated into a single cost function to reduce the computational cost, though a better approach is to use multiobjective optimization methods to directly identify a set of Pareto-optimal solutions, which can be used by the designer to make more efficient design decisions (instead of weighting and aggregating the costs upfront). Most of the work in multiobjective optimization is focused on multiobjective evolutionary algorithms (MOEAs). While MOEAs are well-suited to handle large, intractable design spaces, they typically require thousands of expensive simulations, which is prohibitively expensive for the problems under study. Therefore, the use of surrogate models in multiobjective optimization, denoted as multiobjective surrogate-based optimization, may prove to be even more worthwhile than SBO methods to expedite the optimization of computational expensive systems. In this paper, the authors propose the efficient multiobjective optimization (EMO) algorithm which uses Kriging models and multiobjective versions of the probability of improvement and expected improvement criteria to identify the Pareto front with a minimal number of expensive simulations. The EMO algorithm is applied on multiple standard benchmark problems and compared against the well-known NSGA-II, SPEA2 and SMS-EMOA multiobjective optimization methods
- …