25 research outputs found

    Conteúdo de nutrientes em componentes da biomassa de laranjeira hamlin

    Get PDF
    A compreensão da distribuição de nutrientes na árvore é importante para o estabelecimento de programas de manejo nutricional eficientes para a produção de citros. Árvores de laranjeira Hamlin [Citrus sinensis (L.) Osb.] em citrumelo Swingle [Poncirus trifoliata (L.) Raf. x Citrus paradisi Macfad.], com 6 anos de idade, cultivadas num Entisol da Flórida foram colhidas para investigar a distribuição e o conteúdo de macro e micronutrientes em componentes da biomassa. A distribuição de nutrientes, em peso seco, da biomassa total da árvore foi: frutos = 30,3%, folhas = 9,7%, ramos = 26,1%, tronco = 6,3% e raízes = 27,8%. A concentração de nutrientes em folhas recém maduras ficou entre os níveis adequado e ótimo pela interpretação da análise foliar da Flórida. Maiores concentrações de Ca foram observadas nas folhas mais velhas e nos tecidos lenhosos. Concentrações de micronutrientes foram significativamente maiores nas radicelas em comparação àquelas lenhosas. O maior conteúdo de nutriente na árvore foi de Ca (273,8 g/árvore), seguido de N e de K (243,7 e 181,5 g/árvore, respectivamente). Outros macronutrientes somaram cerca de 11% do conteúdo total de nutrientes. O conteúdo de vários nutrientes na fruta fresca, em kg ton-1, foi: N = 1,20; K = 1,54; P = 0,18; Ca = 0,57; Mg = 0,12; S = 0,09; B = 1,63 x 10-3; Cu = 0,39 x 10-3; Fe = 2,1 x 10-3; Mn = 0,38 x 10-3 e Zn = 0,40 x 10-3. O conteúdo total de N, K e P no pomar correspondeu a 66,5, 52,0, and 8,3 kg ha-1, respectivamente, os quais foram equivalentes às quantidades de nutriente aplicadas anualmente pela adubação.The knowledge of the nutrient distribution in trees is important to establish sound nutrient management programs for citrus production. Six-year-old Hamlin orange trees [Citrus sinensis (L.) Osb.] on Swingle citrumelo [Poncirus trifoliata (L.) Raf. x Citrus paradisi Macfad.] rootstock, grown on a sandy Entisol in Florida were harvested to investigate the macro and micronutrient distributions of biomass components. The biomass of aboveground components of the tree represented the largest proportion of the total. The distribution of the total tree dry weight was: fruit = 30.3%, leaf = 9.7%, twig = 26.1%, trunk = 6.3%, and root = 27.8%. Nutrient concentrations of recent mature leaves were in the adequate to optimal range as suggested by interpretation of leaf analysis in Florida. Concentrations of Ca in older leaves and woody tissues were much greater than those in the other parts of the tree. Concentrations of micronutrients were markedly greater in fibrous root as compared to woody roots. Calcium made up the greatest amount of nutrient in the citrus tree (273.8 g per tree), followed by N and K (234.7 and 181.5 g per tree, respectively). Other macronutrients comprised about 11% of the total nutrient content of trees. The contents of various nutrients in fruits were: N = 1.20, K = 1.54, P = 0.18, Ca = 0.57, Mg = 0.12, S = 0.09, B = 1.63 x 10-3, Cu = 0.39 x 10-3, Fe = 2.1 x 10-3, Mn = 0.38 10-3, and Zn = 0.40 10-3 (kg ton-1). Total contents of N, K, and P in the orchard corresponded to 66.5, 52.0, and 8.3 kg ha-1, respectively, which were equivalent to the amounts applied annually by fertilization

    Concentrações foliares do porta-enxerto limoeiro 'cravo' em função da adubação N, P, K, Ca e S

    Get PDF
    A determinação das concentrações foliares representa o estado nutricional das plantas, identifica deficiências e/ou excessos e avalia a necessidade de ajustar as adubações. Este trabalho objetivou determinar a melhor combinação de doses NPKCa e S que proporcione a concentração foliar responsável pela maior quantidade de matéria seca total das plantas de porta-enxerto limoeiro `Cravo', em um experimento fatorial fracionário (¹/25) 5(4), com 25 tratamentos, repartidos em cinco blocos de cinco tratamentos. As mudas do limoeiro `Cravo' (Citrus limonia Osb.) foram transplantadas para recipientes (3,8 dm³) com substrato comercial, em viveiro telado, quando atingiram 10 cm. Os tratamentos consistiram de combinações das seguintes doses (g por planta): N = 0,31; 0,62; 1,25; 2,5 e 5; K = 0,4; 0,62; 1,25; 2,5 e 5; P = 0,35; 1,0; 2,0; 3,0 e 4,0; e Ca = 3,5; 5,0; 6,0; 7,0 e 8,0. O P e o Ca foram misturados ao substrato de uma vez antes do transplantio e o N e o K após o transplantio, divididos em 20 aplicações semanais. As fontes utilizadas para os tratamentos foram superfosfato triplo, gesso, NH4NO3 e KCl. As concentrações foliares aos cinco meses de idade situaram-se na faixa alta, para os nutrientes N, P, K e S, e baixa para Ca e Mg. As doses que proporcionaram a maior produção de matéria seca e melhores concentrações foliares foram N = 3,5; P = 2,7; K = 2,0; e Ca = 6,5 g por planta.Analysis of leaf nutrient contents can demonstrate plant nutritional status, identify symptoms of deficiency and toxicity, and evaluate the need to adjust fertilization programs. This research determined N:P:K:Ca:S rates for optimal nutrition of Rangpur lime - RL (Citrus limonia Osb.) rootstock, in an experiment arranged in a fractional factorial design of the (¹/25) 5(4) type, with 25 treatments distributed within five blocks. Seedlings of RL were transplanted into 3.8-dm³ containers filled with commercial growing media, when plant height = 10 cm, in a nursery. Treatments consisted of the following nutrient rates (g per plant): N = 0.31, 0.62, 1.25, 2.5 and 5; K = 0.4, 0.62, 1.25, 2.5 and 5; P = 0.35, 1.0, 2.0, 3.0 and 4.0; and Ca = 3.5, 5.0, 6.0, 7.0 and 8.0. Phosphorus and Ca were applied to the compost before transplant of seedlings, while N and K were applied later and total amounts were split into 20 weekly applications via fertigation. Nutrient sources were triple super phosphate, gypsum, NH4NO3 and KCl. Leaf nutrient concentrations of five-mo-old plants were high or in excess for N, P, K and S. Calcium and Mg concentrations were low. Greater dry mass of plants were observed at nutrient rates of N = 3.5, P = 2.7, K = 2.0, and Ca = 6.5 g per plant

    Sources and rates of potassium for sweet orange production

    Get PDF
    Fruit yield and quality of citrus trees (Citrus spp.) is markedly affected by potassium (K) fertilization. Potassium chloride is the major source of K, even though other sources are also available for agricultural use when crops are sensitive to chloride or where potential for accumulation of salts in soils exists. Only few studies addressed the effect of K sources on yield and quality of citrus fruits. Therefore, the present study was conducted to evaluate K2SO4 and KCl fertilizer sources at 0, 100, 200, and 300 kg ha-1 per year K2O on fruit yield and quality of 'Pêra' and 'Valencia' sweet orange trees in the field. The experiments were carried out in a 4 × 2 factorial design under randomized complete blocks, with four replicates from 2001 to 2004. Fruit yield increased with increased K fertilization. Nutrient rate for maximum economic yield of 'Pêra' was 200 kg ha-1 of K2O and for 'Valencia', 270 kg ha-1 of K2O. Differences were attributed to higher production and K exportation by fruits of 'Valencia'. Fruit mass also increased with increased K fertilization what decreased total soluble solids in juice, and which correlated with leaf K concentrations for 'Valencia' (r = 0.76; p < 0.05). Leaf Ca, Mg and B concentrations decreased with K rates. Additionally, leaf Cl increased up to 440 mg kg-1 with KCl rates, even though no negative effects occurred either on fruit yield or quality of trees

    Nutrient content of biomass components of Hamlin sweet orange trees

    Get PDF
    The knowledge of the nutrient distribution in trees is important to establish sound nutrient management programs for citrus production. Six-year-old Hamlin orange trees [Citrus sinensis (L.) Osb.] on Swingle citrumelo [Poncirus trifoliata (L.) Raf. x Citrus paradisi Macfad.] rootstock, grown on a sandy Entisol in Florida were harvested to investigate the macro and micronutrient distributions of biomass components. The biomass of aboveground components of the tree represented the largest proportion of the total. The distribution of the total tree dry weight was: fruit = 30.3%, leaf = 9.7%, twig = 26.1%, trunk = 6.3%, and root = 27.8%. Nutrient concentrations of recent mature leaves were in the adequate to optimal range as suggested by interpretation of leaf analysis in Florida. Concentrations of Ca in older leaves and woody tissues were much greater than those in the other parts of the tree. Concentrations of micronutrients were markedly greater in fibrous root as compared to woody roots. Calcium made up the greatest amount of nutrient in the citrus tree (273.8 g per tree), followed by N and K (234.7 and 181.5 g per tree, respectively). Other macronutrients comprised about 11% of the total nutrient content of trees. The contents of various nutrients in fruits were: N = 1.20, K = 1.54, P = 0.18, Ca = 0.57, Mg = 0.12, S = 0.09, B = 1.63 x 10-3, Cu = 0.39 x 10-3, Fe = 2.1 x 10-3, Mn = 0.38 10-3, and Zn = 0.40 10-3 (kg ton-1). Total contents of N, K, and P in the orchard corresponded to 66.5, 52.0, and 8.3 kg ha-1, respectively, which were equivalent to the amounts applied annually by fertilization

    Atmospheric Absorption of Fluoride by Cultivated Species. Leaf Structural Changes and Plant Growth

    No full text
    Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L(-1)) or high (0.16 mol L(-1)) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (similar to 180 mg kg(-1)) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.CNPqFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2008/52557-0]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)[2008/09541-6

    BORON UPTAKE AND DISTRIBUTION IN FIELD GROWN CITRUS TREES

    No full text
    In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old `Valencia` sweet orange trees on `Swingle` citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.FAPESPCAPE
    corecore