35 research outputs found

    Intersyngenic variations in the esterases of axenic stocks of Paramecium aurelia

    Full text link
    The esterase isozymes were surveyed in axenic stocks of syngens 1, 2, 4, 5, 6, and 8 of Paramecium aurelia by starch gel electrophoresis. In paramecia there appear to be four types of esterases which are clearer in axenic than in bacterized stocks. Each type differs in its substrate specificity and/or its response to the inhibitor eserine sulfate. Minor variations in type D esterases sometimes occur in different extracts of the same stock and may result from changes in the temperature of growth of the cells or growth cycle differences. Differences in the mobility of the A, B, or C (cathodal) types of esterases may occur in different syngens. They also occur for the A and B types among stocks within a syngen, but the frequency is low, except in the case of syngen 2. Since each of the types of esterases varies independently, at least four and possibly more genes appear to specify the esterases in the species complex. Some pairs of syngens vary in their electrophoretic positions for all types of esterases. Other pairs have identical zymograms. This observation suggests that some syngens may differ from each other by as many as four esterase genes, while others may not differ at all. The difference between P. aurelia and Tetrahymena pyriformis in the degree of intrasyngenic variation observed for enzymes is discussed in relation to other types of characters, the organization of the genetic material in the macronucleus, the presence of symbionts, and their breeding systems. It is suggested that enzyme variation is achieved by the action of different selective forces in these two groups of ciliated protozoa.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44170/1/10528_2004_Article_BF00485643.pd

    Genome amplification and gene expression in the ciliate macronucleus

    Full text link
    The focus of this review is on the micronucleus and macronucleus in the ciliated protozoa and the organization and function of the DNA molecules within them. We present (1) some of the structural and functional differences which are known, (2) the genetic evidence for macronuclear units, (3) two hypotheses for the organization of the DNA molecules in the macronucleus to explain these units, and (4) experiments designed to discriminate between these hypotheses. We conclude that the size of the genome is not reduced in the macronucleus and that there are 45 copies of the haploid genome present in the macronucleus of normal strains of Tetrahymena pyriformis and 800 copies in the macronucleus of Paramecium aurelia . The ciliate genome is relatively simple in terms of repeated sequences. However, not all copies of the genes present in the macronucleus may be identical since fractions of differing thermal stability appear after renaturation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44178/1/10528_2004_Article_BF00486122.pd

    Centrioles: active players or passengers during mitosis?

    Get PDF
    Centrioles are cylinders made of nine microtubule (MT) triplets present in many eukaryotes. Early studies, where centrosomes were seen at the poles of the mitotic spindle led to their coining as “the organ for cell division”. However, a variety of subsequent observational and functional studies showed that centrosomes might not always be essential for mitosis. Here we review the arguments in this debate. We describe the centriole structure and its distribution in the eukaryotic tree of life and clarify its role in the organization of the centrosome and cilia, with an historical perspective. An important aspect of the debate addressed in this review is how centrioles are inherited and the role of the spindle in this process. In particular, germline inheritance of centrosomes, such as their de novo formation in parthenogenetic species, poses many interesting questions. We finish by discussing the most likely functions of centrioles and laying out new research avenues

    Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next generation sequencing strategy

    Get PDF
    Background Nephronophthisis associated ciliopathies (NPHP-AC) comprise a group of autosomal recessive cystic kidney diseases that includes nephronophthisis (NPHP), Senior-Loken syndrome (SLS), Joubert syndrome (JBTS), and Meckel-Gruber syndrome (MKS). To date, causative mutations in NPHP-AC have been described for 18 different genes, rendering mutation analysis tedious and expensive. To overcome the broad genetic locus heterogeneity, a strategy of DNA pooling with consecutive massively parallel resequencing (MPR) was devised.Methods In 120 patients with severe NPHP-AC phenotypes, five pools of genomic DNA with 24 patients each were prepared which were used as templates in order to PCR amplify all 376 exons of 18 NPHP-AC genes (NPHP1, INVS, NPHP3, NPHP4, IQCB1, CEP290, GLIS2, RPGRIP1L, NEK8, TMEM67, INPP5E, TMEM216, AHI1, ARL13B, CC2D2A, TTC21B, MKS1, and XPNPEP3). PCR products were then subjected to MPR on an Illumina Genome-Analyser and mutations were subsequently assigned to their respective mutation carrier via CEL I endonuclease based heteroduplex screening and confirmed by Sanger sequencing.Results For proof of principle, DNA from patients with known mutations was used and detection of 22 out of 24 different alleles (92% sensitivity) was demonstrated. MPR led to the molecular diagnosis in 30/120 patients (25%) and 54 pathogenic mutations (27 novel) were identified in seven different NPHP-AC genes. Additionally, in 24 patients only single heterozygous variants of unknown significance were found.Conclusions The combined approach of DNA pooling followed by MPR strongly facilitates mutation analysis in broadly heterogeneous single gene disorders. The lack of mutations in 75% of patients in this cohort indicates further extensive heterogeneity in NPHP-AC
    corecore