372 research outputs found

    On the stability of travelling waves with vorticity obtained by minimisation

    Get PDF
    We modify the approach of Burton and Toland [Comm. Pure Appl. Math. (2011)] to show the existence of periodic surface water waves with vorticity in order that it becomes suited to a stability analysis. This is achieved by enlarging the function space to a class of stream functions that do not correspond necessarily to travelling profiles. In particular, for smooth profiles and smooth stream functions, the normal component of the velocity field at the free boundary is not required a priori to vanish in some Galilean coordinate system. Travelling periodic waves are obtained by a direct minimisation of a functional that corresponds to the total energy and that is therefore preserved by the time-dependent evolutionary problem (this minimisation appears in Burton and Toland after a first maximisation). In addition, we not only use the circulation along the upper boundary as a constraint, but also the total horizontal impulse (the velocity becoming a Lagrange multiplier). This allows us to preclude parallel flows by choosing appropriately the values of these two constraints and the sign of the vorticity. By stability, we mean conditional energetic stability of the set of minimizers as a whole, the perturbations being spatially periodic of given period.Comment: NoDEA Nonlinear Differential Equations and Applications, to appea

    Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics

    Get PDF
    For the equations of elastodynamics with polyconvex stored energy, and some related simpler systems, we define a notion of dissipative measure-valued solution and show that such a solution agrees with a classical solution with the same initial data when such a classical solution exists. As an application of the method we give a short proof of strong convergence in the continuum limit of a lattice approximation of one dimensional elastodynamics in the presence of a classical solution. Also, for a system of conservation laws endowed with a positive and convex entropy, we show that dissipative measure-valued solutions attain their initial data in a strong sense after time averaging

    Decay and Continuity of Boltzmann Equation in Bounded Domains

    Full text link
    Boundaries occur naturally in kinetic equations and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: inflow, bounce-back reflection, specular reflection, and diffuse reflection. We establish exponential decay in LL^{\infty} norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set of the velocity at the boundary. Our contribution is based on a new L2L^{2} decay theory and its interplay with delicate % L^{\infty} decay analysis for the linearized Boltzmann equation, in the presence of many repeated interactions with the boundary.Comment: 89 pages

    Global existence of solutions for the relativistic Boltzmann equation with arbitrarily large initial data on a Bianchi type I space-time

    Full text link
    We prove, for the relativistic Boltzmann equation on a Bianchi type I space-time, a global existence and uniqueness theorem, for arbitrarily large initial data.Comment: 17 page

    Some Results on the Boundary Control of Systems of Conservation Laws

    Full text link
    This note is concerned with the study of the initial boundary value problem for systems of conservation laws from the point of view of control theory, where the initial data is fixed and the boundary data are regarded as control functions. We first consider the problem of controllability at a fixed time for genuinely nonlinear Temple class systems, and present a description of the set of attainable configurations of the corresponding solutions in terms of suitable Oleinik-type estimates. We next present a result concerning the asymptotic stabilization near a constant state for general n×nn\times n systems. Finally we show with an example that in general one cannot achieve exact controllability to a constant state in finite time.Comment: 10 pages, 4 figures, conferenc

    Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section

    Full text link
    This paper focuses on the study of existence and uniqueness of distributional and classical solutions to the Cauchy Boltzmann problem for the soft potential case assuming Sn1S^{n-1} integrability of the angular part of the collision kernel (Grad cut-off assumption). For this purpose we revisit the Kaniel--Shinbrot iteration technique to present an elementary proof of existence and uniqueness results that includes large data near a local Maxwellian regime with possibly infinite initial mass. We study the propagation of regularity using a recent estimate for the positive collision operator given in [3], by E. Carneiro and the authors, that permits to study such propagation without additional conditions on the collision kernel. Finally, an LpL^{p}-stability result (with 1p1\leq p\leq\infty) is presented assuming the aforementioned condition.Comment: 19 page

    On the global well-posedness for the Boussinesq system with horizontal dissipation

    Full text link
    In this paper, we investigate the Cauchy problem for the tridimensional Boussinesq equations with horizontal dissipation. Under the assumption that the initial data is an axisymmetric without swirl, we prove the global well-posedness for this system. In the absence of vertical dissipation, there is no smoothing effect on the vertical derivatives. To make up this shortcoming, we first establish a magic relationship between urr\frac{u^{r}}{r} and ωθr\frac{\omega_\theta}{r} by taking full advantage of the structure of the axisymmetric fluid without swirl and some tricks in harmonic analysis. This together with the structure of the coupling of \eqref{eq1.1} entails the desired regularity.Comment: 32page

    Stable ground states for the relativistic gravitational Vlasov-Poisson system

    Full text link
    We consider the three dimensional gravitational Vlasov-Poisson (GVP) system in both classical and relativistic cases. The classical problem is subcritical in the natural energy space and the stability of a large class of ground states has been derived by various authors. The relativistic problem is critical and displays finite time blow up solutions. Using standard concentration compactness techniques, we however show that the breaking of the scaling symmetry allows the existence of stable relativistic ground states. A new feature in our analysis which applies both to the classical and relativistic problem is that the orbital stability of the ground states does not rely as usual on an argument of uniqueness of suitable minimizers --which is mostly unknown-- but on strong rigidity properties of the transport flow, and this extends the class of minimizers for which orbital stability is now proved

    Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients

    Full text link
    In this paper we give an affirmative answer to an open question mentioned in [Le Bris and Lions, Comm. Partial Differential Equations 33 (2008), 1272--1317], that is, we prove the well-posedness of the Fokker-Planck type equations with Sobolev diffusion coefficients and BV drift coefficients.Comment: 11 pages. The proof has been modifie

    Regularizing effect and local existence for non-cutoff Boltzmann equation

    Get PDF
    The Boltzmann equation without Grad's angular cutoff assumption is believed to have regularizing effect on the solution because of the non-integrable angular singularity of the cross-section. However, even though so far this has been justified satisfactorily for the spatially homogeneous Boltzmann equation, it is still basically unsolved for the spatially inhomogeneous Boltzmann equation. In this paper, by sharpening the coercivity and upper bound estimates for the collision operator, establishing the hypo-ellipticity of the Boltzmann operator based on a generalized version of the uncertainty principle, and analyzing the commutators between the collision operator and some weighted pseudo differential operators, we prove the regularizing effect in all (time, space and velocity) variables on solutions when some mild regularity is imposed on these solutions. For completeness, we also show that when the initial data has this mild regularity and Maxwellian type decay in velocity variable, there exists a unique local solution with the same regularity, so that this solution enjoys the CC^\infty regularity for positive time
    corecore