14 research outputs found

    Nature of the displaceable heme-axial residue in the EcDos protein, a heme-based sensor from Escherichia coli

    No full text
    The EcDos protein belongs to a group of heme-based sensors that detect their ligands with a heme-binding PAS domain. Among these various heme-PAS proteins, EcDos is unique in having its heme iron coordinated at both axial positions to residues of the protein. To achieve its high affinities for ligands, one of the axial heme-iron residues in EcDos must be readily displaceable. Here we present evidence from mutagenesis, ligand-binding measurements, and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopies about the nature of the displaceable residue in the heme-PAS domain of EcDos, i.e., EcDosH. The magnetic circular dichroism spectra in the near-infrared region establish histidine-methionine coordination in met-EcDos. To determine whether in deoxy-EcDos coordination of the sixth axial position is also to methionine, methionine 95 was substituted with isoleucine. This substitution caused the ferrous heme iron to change from an exclusively hexacoordinate low-spin form (EcDosH) to an exclusively pentacoordinate high-spin form (M95I EcDosH). This was accompanied by a modest acceleration of the dissociation rates of ligands but a dramatic increase (60-1300-fold) in the association rate constants for binding and NO. As a result, the affinity for of O-2, CO, O-2 was enhanced 10-fold in M95I EcDosH, but the partition constant M = [K-d(O-2)/K-d(CO)] between CO and O-2 was raised to about 30 from the extraordinarily low EcDosH value of 1. Thus a major consequence of the increased O-2 affinity of this sensor was the loss of its unusually strong ligand discrimination

    Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β‑Cells

    No full text
    Novel strategies are needed to modulate β-cell differentiation and function as potential β-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on β-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and β-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters β-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of β-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts

    Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β‑Cells

    No full text
    Novel strategies are needed to modulate β-cell differentiation and function as potential β-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on β-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and β-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters β-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of β-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts

    Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in β‑Cells

    No full text
    Novel strategies are needed to modulate β-cell differentiation and function as potential β-cell replacement or restorative therapies for diabetes. We previously demonstrated that small molecules based on the isoxazole scaffold drive neuroendocrine phenotypes. The nature of the effects of isoxazole compounds on β-cells was incompletely defined. We find that isoxazole induces genes that support neuroendocrine and β-cell phenotypes and suppresses genes important for proliferation. Isoxazole alters β-cell metabolites and protects glucose-responsive signaling pathways under lipotoxic conditions. Finally, we show that isoxazole improves glycemia in a mouse model of β-cell regeneration. Isoxazole is a prime candidate to alter cell fate in different contexts
    corecore