2,783 research outputs found

    Experimental measurement of efficiency and transport coherence of a cold atom Brownian motor in optical lattices

    Full text link
    The rectification of noise into directed movement or useful energy is utilized by many different systems. The peculiar nature of the energy source and conceptual differences between such Brownian motor systems makes a characterization of the performance far from straightforward. In this work, where the Brownian motor consists of atoms interacting with dissipative optical lattices, we adopt existing theory and present experimental measurements for both the efficiency and the transport coherence. We achieve up to 0.3% for the efficiency and 0.01 for the P\'eclet number

    Reaching optimally oriented molecular states by laser kicks

    Full text link
    We present a strategy for post-pulse orientation aiming both at efficiency and maximal duration within a rotational period. We first identify the optimally oriented states which fulfill both requirements. We show that a sequence of half-cycle pulses of moderate intensity can be devised for reaching these target states.Comment: 4 pages, 3 figure

    How Broken DNA Finds Its Template for Repair: A Computational Approach

    Get PDF
    Homologous recombination (HR) is the process by which a double-strand break in DNA is repaired using an identical donor template. Despite rapid progress in identifying the functions of the proteins that mediate HR, little is known about how broken DNA finds its homologous template. This process, coined homology search, has been difficult to monitor experimentally. Therefore, we present here a computational approach to model the effect of subnuclear positioning and chromatin dynamics on homology search. We found that, in our model, homology search occurs more efficiently if both the cut site and its template are at the nuclear periphery, whereas restricting the movement of the template or the break alone to the periphery markedly increases the time of the search. Immobilization of either component at any position slows down the search. Based on these results, we propose a new model for homology search, the facilitated random search model, which predicts that the search is random, but that nuclear organization and dynamics strongly influence its speed and efficiency

    Laser control for the optimal evolution of pure quantum states

    Full text link
    Starting from an initial pure quantum state, we present a strategy for reaching a target state corresponding to the extremum (maximum or minimum) of a given observable. We show that a sequence of pulses of moderate intensity, applied at times when the average of the observable reaches its local or global extremum, constitutes a strategy transferable to different control issues. Among them, post-pulse molecular alignment and orientation are presented as examples. The robustness of such strategies with respect to experimentally relevant parameters is also examined.Comment: 16 pages, 9 figure

    High-order optical nonlinearity at low light levels

    Full text link
    We observe a nonlinear optical process in a gas of cold atoms that simultaneously displays the largest reported fifth-order nonlinear susceptibility \chi^(5) = 1.9x10^{-12} (m/V)^4 and high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and gives rise to efficient Bragg scattering in the form of six-wave-mixing at low-light-levels. For large atom-photon coupling strengths, the back-action of the scattered fields influences the light-matter dynamics. This system may have important applications in many-body physics, quantum information processing, and multidimensional soliton formation.Comment: 5 pages, 3 figure

    Identification of genes coding for B cell antigens of Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC) by using phage display

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Contagious bovine pleuropneumonia (CBPP) is a mycoplasmal disease caused by <it>Mycoplasma mycoides </it>subsp. <it>mycoides </it>SC (<it>Mmm</it>SC). Since the disease is a serious problem that can affect cattle production in parts of Africa, there is a need for an effective and economical vaccine. Identifying which of the causative agent's proteins trigger potentially protective immune responses is an important step towards developing a subunit vaccine. Accordingly, the purpose of this study was to determine whether phage display combined with bioinformatics could be used to narrow the search for genes that code for potentially immunogenic proteins of <it>Mmm</it>SC. Since the production of IgG2 and IgA are associated with a Th<sub>1 </sub>cellular immune response which is implicated in protection against CBPP, antigens which elicit these immunoglobulin subclasses may be useful in developing a subunit vaccine.</p> <p>Results</p> <p>A filamentous phage library displaying a repertoire of peptides expressed by fragments of the genome of <it>MmmSC </it>was constructed. It was subjected to selection using antibodies from naturally- and experimentally-infected cattle. Mycoplasmal genes were identified by matching the nucleotide sequences of DNA from immunoselected phage particles with the mycoplasmal genome. This allowed a catalogue of genes coding for the proteins that elicited an immune response to be compiled. Using this method together with computer algorithms designed to score parameters that influence surface accessibility and hence potential antigenicity, five genes (<it>abc, gapN, glpO, lppB </it>and <it>ptsG</it>) were chosen to be expressed in <it>Escherichia coli</it>. After appropriate site-directed mutagenesis, polypeptides representing portions of each of these proteins were tested for immunoreactivity. Of these five, polypeptides representing expression products of <it>abc </it>and <it>lppB </it>were recognised on immunoblots by sera obtained from cattle during a natural outbreak of the disease.</p> <p>Conclusion</p> <p>Since phage display physically couples phenotype with genotype, it was used to compile a list of sequences that code for <it>Mmm</it>SC proteins bearing epitopes which were recognised by antibodies in the serum of infected animals. Together with the appropriate bioinformatic analyses, this approach provided several potentially useful vaccine or diagnostic leads. The phage display step empirically identified sequences by their interaction with antibodies which accordingly reduced the number of ORFs that had to be expressed for testing. This is a particular advantage when working with <it>Mmm</it>SC since the mycoplasmal codon for tryptophan needs to be mutated to prevent it from being translated as a stop in <it>E. coli</it>.</p

    Field-dependent heat transport in the Kondo insulator SmB6 : phonons scattered by magnetic impurities

    Full text link
    The thermal conductivity κ\kappa of the Kondo insulator SmB6_6 was measured at low temperature, down to 70 mK, in magnetic fields up to 15 T, on single crystals grown using both the floating-zone and the flux methods. The residual linear term κ0/T\kappa_0/T at T0T \to 0 is found to be zero in all samples, for all magnetic fields, in agreement with previous studies. There is therefore no clear evidence of fermionic heat carriers. In contrast to some prior data, we observe a large enhancement of κ(T)\kappa(T) with increasing field. The effect of field is anisotropic, depending on the relative orientation of field and heat current (parallel or perpendicular), and with respect to the cubic crystal structure. We interpret our data in terms of heat transport predominantly by phonons, which are scattered by magnetic impurities.Comment: publish versio

    Demonstration of a controllable three-dimensional Brownian motor in symmetric potentials

    Full text link
    We demonstrate a Brownian motor, based on cold atoms in optical lattices, where isotropic random fluctuations are rectified in order to induce controlled atomic motion in arbitrary directions. In contrast to earlier demonstrations of ratchet effects, our Brownian motor operates in potentials that are spatially and temporally symmetric, but where spatiotemporal symmetry is broken by a phase shift between the potentials and asymmetric transfer rates between them. The Brownian motor is demonstrated in three dimensions and the noise-induced drift is controllable in our system.Comment: 5 pages, 4 figure
    corecore