29 research outputs found

    High expression of HLA-E in colorectal carcinoma is associated with a favorable prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human Leukocyte Antigen (HLA)-E is a non-classical class I HLA molecule that can be stabilized by ligands donated by other classical (HLA-A, -B, -C) and non-classical (HLA-G) family members. HLA-E engages a variety of immune receptors expressed by cytotoxic T lymphocytes (CTLs), Natural killer (NK) cells and NK-CTLs. In view of the opposing outcomes (activation or inhibition) of the different HLA-E receptors, the preferred role (if any) of HLA-E expressed <it>in vivo </it>on tumor cells remains to be established.</p> <p>Methods</p> <p>Taking advantage of MEM-E/02, a recently characterized antibody to denatured HLA-E molecules, HLA-E expression was assessed by immunohistochemistry on an archival collection (formalin-fixed paraffin-embedded) of 149 colorectal primary carcinoma lesions paired with their morphologically normal mucosae. Lymphoid infiltrates were assessed for the expression of the HLA-E-specific, inhibitory, non-rearranging receptor NKG2A.</p> <p>Results</p> <p>High HLA-E expression did not significantly correlate with the expression of classical HLA-B and HLA-C molecules, but it did correlate with high expression of its preferential ligand donor HLA-A. In addition, it correlated with lymphoid cell infiltrates expressing the inhibitory NKG2A receptor, and was an independent predictor of good prognosis, particularly in a subset of patients whose tumors express HLA-A levels resembling those of their paired normal counterparts (HLA-A). Thus, combination phenotypes (HLA-E<sup>lo-int</sup>/HLA-AE and HLA-E<sup>hi</sup>/HLA-AE) of classical and non-classical class I HLA molecules mark two graded levels of good prognosis.</p> <p>Conclusions</p> <p>These results suggest that HLA-E favors activating immune responses to colorectal carcinoma. They also provide evidence in humans that tumor cells entertain extensive negotiation with the immune system until a compromise between recognition and escape is reached. It is implied that this process occurs stepwise, as predicted by the widely accepted 'immunoediting' model.</p

    MKK3 sustains cell proliferation and survival through p38DELTA MAPK activation in colorectal cancer

    Get PDF
    : Colorectal cancer (CRC) is one of the most common malignant tumors worldwide and understanding its underlying molecular mechanisms is crucial for the development of therapeutic strategies. The mitogen-activated protein kinase-kinase 3 (MKK3) is a specific activator of p38 MAP kinases (p38 MAPKs), which contributes to the regulation of several cellular functions, such as proliferation, differentiation, apoptosis as well as response to drugs. At present, the exact MKK3/p38 MAPK pathway contribution in cancer is heavily debated because of its pleiotropic function. In this work, we retrospectively explored the prognostic and pathobiologic relevance of MKK3 in a cohort of CRC patients and assessed MKK3 molecular functions in a panel of CRC lines and colonocytes primary cultures. We found increased MKK3 levels in late-stage CRC patients which correlated with shorter overall survival. Herein, we report that the MKK3 targeting by inducible RNA interference univocally exerts antitumor effects in CRC lines but not in primary colonocytes. While MKK3 depletion per se affects growth and survival by induction of sustained autophagy and death in some CRC lines, it potentiates response to chemotherapeutic drug 5-fluorouracil (5-FU) in all of the tested CRC lines in vitro. Here, we demonstrate for the first time that in CRC the MKK3 specifically activates p38delta MAPK isoform to sustain prosurvival signaling and that such effect is exacerbated upon 5-FU challenge. Indeed, p38delta MAPK silencing recapitulates MKK3 depletion effects in CRC cells in vitro and in vivo. Overall, our data identified a molecular mechanism through which MKK3 supports proliferation and survival signaling in CRC, further supporting MKK3 as a novel and extremely attractive therapeutic target for the development of promising strategies for the management of CRC patients

    Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR) Gene Copy Number (GCN). Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC) patients receiving chemotherapy plus Cetuximab.</p> <p>Methods</p> <p>One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated) were retrospectively studied by fluorescence in situ hybridization (FISH) to assess EGFR-GCN and by immunohistochemistry (IHC) to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR), progression-free survival (PFS) and overall survival (OS).</p> <p>Results</p> <p>Increased EGFR-GCN was found in 60/101 (59%) tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43). Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43) while it was 18% (10/56) in the group with previous lines of therapy (p < 0.0001). RR was observed in 29/60 (48%) of patients with increased EGFR-GCN and in 6/28 (21%) in those without (p = 0.02). At multivariate analyses, number of chemotherapy lines and increased EGFR-GCN were predictive of response; EGFR-IHC score, increased EGFR-GCN and number of chemotherapy lines were significantly associated with a significant better PFS. Response to therapy was the only prognostic predictive factor for OS. In the 60 patients analyzed for k-ras mutations, number of chemotherapy lines, increased EGFR-GCN and k-ras wild type status predicted a better PFS.</p> <p>Conclusion</p> <p>In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.</p

    DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy

    Get PDF
    The DNA damage response (DDR) network is exploited by cancer cells to withstand chemotherapy. Gastric cancer (GC) carries deregulation of the DDR and harbors genetic defects that fuel its activation. The ATM-Chk2 and ATR-Chk1-Wee1 axes are deputed to initiate DNA repair. Overactivation of these pathways in cancer cells may represent an adaptive response for compensating genetic defects deregulating G1 -S transition (e.g., TP53) and ATM/ATR-initiated DNA repair (e.g., ARID1A). We hypothesized that DDR-linked biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Immunohistochemical assessment of DDR kinases (pATM, pChk2, pChk1 and pWee1) and DNA damage markers (\u3b3-H2AX and pRPA32) was performed in biological samples from 110 advanced GC patients treated with first-line chemotherapy, either in phase II trials or in routine clinical practice. In 90 patients, this characterization was integrated with targeted ultra-deep sequencing for evaluating the mutational status of TP53 and ARID1A. We recorded a positive association between the investigated biomarkers. The combination of two biomarkers (\u3b3-H2AXhigh /pATMhigh ) was an adverse factor for both progression-free survival (multivariate Cox: HR 2.23, 95%CI: 1.47-3.40) and overall survival (multivariate Cox: HR: 2.07, 95%CI: 1.20-3.58). The relationship between the \u3b3-H2AXhigh /pATMhigh model and progression-free survival was consistent across the different TP53 backgrounds and was maintained in the ARID1A wild-type setting. Conversely, this association was no longer observed in an ARID1A-mutated subgroup. The \u3b3-H2AXhigh /pATMhigh model negatively impacted survival outcomes in GC patients treated with chemotherapy. The mutational status of ARID1A, but apparently not TP53 mutations, affects its predictive significanc

    DNA damage repair and survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy

    Get PDF
    The DNA damage response (DDR) network is exploited by cancer cells to withstand chemotherapy. Gastric cancer (GC) carries deregulation of the DDR and harbors genetic defects that fuel its activation. The ATM-Chk2 and ATR-Chk1-Wee1 axes are deputed to initiate DNA repair. Overactivation of these pathways in cancer cells may represent an adaptive response for compensating genetic defects deregulating G1-S transition (e.g., TP53) and ATM/ATR-initiated DNA repair (e.g., ARID1A). We hypothesized that DDR-linked biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Immunohistochemical assessment of DDR kinases (pATM, pChk2, pChk1 and pWee1) and DNA damage markers (\uce\ub3-H2AX and pRPA32) was performed in biological samples from 110 advanced GC patients treated with first-line chemotherapy, either in phase II trials or in routine clinical practice. In 90 patients, this characterization was integrated with targeted ultra-deep sequencing for evaluating the mutational status of TP53 and ARID1A. We recorded a positive association between the investigated biomarkers. The combination of two biomarkers (\uce\ub3-H2AXhigh/pATMhigh) was an adverse factor for both progression-free survival (multivariate Cox: HR 2.23, 95%CI: 1.47\ue2\u80\u933.40) and overall survival (multivariate Cox: HR: 2.07, 95%CI: 1.20\ue2\u80\u933.58). The relationship between the \uce\ub3-H2AXhigh/pATMhigh model and progression-free survival was consistent across the different TP53 backgrounds and was maintained in the ARID1A wild-type setting. Conversely, this association was no longer observed in an ARID1A-mutated subgroup. The \uce\ub3-H2AXhigh/pATMhigh model negatively impacted survival outcomes in GC patients treated with chemotherapy. The mutational status of ARID1A, but apparently not TP53 mutations, affects its predictive significance

    Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy

    Get PDF
    Background: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Methods: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). Results: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZpos/WNTmut) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZpos/WNTmutsignature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZpos/WNTmutsignature negatively impacted overall survival. Conclusions: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes

    Expression of the Hippo transducer TAZ in association with WNT pathway mutations impacts survival outcomes in advanced gastric cancer patients treated with first-line chemotherapy

    Get PDF
    Background: An extensive crosstalk co-regulates the Hippo and Wnt pathway. Preclinical studies revealed that the Hippo transducers YAP/TAZ mediate a number of oncogenic functions in gastric cancer (GC). Moreover, comprehensive characterization of GC demonstrated that the Wnt pathway is targeted by oncogenic mutations. On this ground, we hypothesized that YAP/TAZ- and Wnt-related biomarkers may predict clinical outcomes in GC patients treated with chemotherapy. Methods: In the present study, we included 86 patients with advanced GC treated with first-line chemotherapy in prospective phase II trials or in routine clinical practice. Tissue samples were immunostained to evaluate the expression of YAP/TAZ. Mutational status of key Wnt pathway genes (CTNNB1, APC and FBXW7) was assessed by targeted DNA next-generation sequencing (NGS). Survival curves were estimated and compared by the Kaplan-Meier product-limit method and the log-rank test, respectively. Variables potentially affecting progression-free survival (PFS) were verified in univariate Cox proportional hazard models. The final multivariate Cox models were obtained with variables testing significant at the univariate analysis, and by adjusting for all plausible predictors of the outcome of interest (PFS). Results: We observed a significant association between TAZ expression and Wnt mutations (Chi-squared p = 0.008). Combined TAZ expression and Wnt mutations (TAZ pos /WNT mut ) was more frequently observed in patients with the shortest progression-free survival (negative outliers) (Fisher p = 0.021). Uni-and multivariate Cox regression analyses revealed that patients whose tumors harbored the TAZ pos /WNT mut signature had an increased risk of disease progression (univariate Cox: HR 2.27, 95% CI 1.27-4.05, p = 0.006; multivariate Cox: HR 2.73, 95% CI 1.41-5.29, p = 0.003). Finally, the TAZ pos /WNT mut signature negatively impacted overall survival. Conclusions: Collectively, our findings indicate that the oncogenic YAP/TAZ-Wnt crosstalk may be active in GC, conferring chemoresistant traits that translate into adverse survival outcomes

    Protein drug target activation homogeneity in the face of intra-tumor heterogeneity: implications for precision medicine

    Get PDF
    Introduction: Recent studies indicated tumors may be comprised of heterogeneous molecular subtypes and incongruent molecular portraits may emerge if different areas of the tumor are sampled. This study explored the impact of intra-tumoral heterogeneity in terms of activation/phosphorylation of FDA approved drug targets and downstream kinase substrates.Material and methods: Two independent sets of liver metastases from colorectal cancer were used to evaluate protein kinase-driven signaling networks within different areas using laser capture microdissection and reverse phase protein array.Results: Unsupervised hierarchical clustering analysis indicated that the signaling architecture and activation of the MAPK and AKT-mTOR pathways were consistently maintained within different regions of the same biopsy. Intra-patient variability of the MAPK and AKT-mTOR pathway were <1.06 fold change, while inter-patients variability reached fold change values of 5.01.Conclusions: Protein pathway activation mapping of enriched tumor cells obtained from different regions of the same tumor indicated consistency and robustness independent of the region sampled. This suggests a dominant protein pathway network may be activated in a high percentage of the tumor cell population. Given the genomic intra-tumoral variability, our data suggest that protein/phosphoprotein signaling measurements should be integrated with genomic analysis for precision medicine based analysis

    Tumor Regression Grade After Neoadjuvant Chemoradiation and Surgery for Low Rectal Cancer Evaluated by Multiple Correspondence Analysis: Ten Years as Minimum Follow-up

    No full text
    The tumor regression grade (TRG) role was investigated by multiple correspondence analysis (MCA) in 174 low rectal cancer patients undergone neoadjuvant chemoradiation and radical surgery, with a minimum follow-up of 10 years. The TRG 1 and 2 showed better survival than TRG 4 and 5 subgroups. MCA allocated TRG 3 together with other prognostic variables better than multivariate analysis. Background: The role of Mandard's tumor regression grade (TRG) classification is still controversial in defining the prognostic role of patients who have undergone neoadjuvant chemoradiation (CRT) and total mesorectal excision. The present study evaluated multiple correspondence analysis (MCA) as a tool to better cluster variables, including TRG, for a homogeneous prognosis. Patients and Methods: A total of 174 patients with a minimum follow-up period of 10 years were stratified into 2 groups: group A (TRG 1-3) and group B (TRG 4-5) using Mandard's classification. Overall survival and disease-free survival were analyzed using univariate and multivariate analysis. Subsequently, MCA was used to analyze TRG plus the other prognostic variables. Results: The overall response to CRT was 55.7%, including 13.2% with a pathologic complete response. TRG group A correlated strictly with pN status (P =.0001) and had better overall and disease-free survival than group B (85.1% and 75.6% vs. 71.1% and 67.3%; P =.06 and P =.04, respectively). The TRG 3 subset (about one third of our series) showed prognostically heterogeneous behavior. In addition to multivariate analysis, MCA separated TRG 1 and TRG 2 versus TRG 4 and TRG 5 well and also allocated TRG 3 patients close to the unfavorable prognostic variables. Conclusion: TRG classification should be used in all pathologic reports after neoadjuvant CRT and radical surgery to enrich the prognostic profile of patients with an intermediate risk of relapse and to identify patients eligible for more conservative treatment. Thus, MCA could provide added value
    corecore