186 research outputs found

    Hybrid paramagnon phonon modes at elevated temperatures in EuTiO3

    Full text link
    EuTiO3 (ETO) has recently experienced an enormous revival of interest because of its possible multiferroic properties which are currently in the focus of research. Unfortunately ETO is an unlikely candidate for enlarged multifunctionality since the mode softening - typical for ferroelectrics - remains incomplete, and the antiferromagnetic properties appear at 5.5K only. However, a strong coupling between lattice and Eu spins exists and leads to the appearance of a magnon-phonon-hybrid mode at elevated temperatures as evidenced by electron paramagnetic resonance (EPR), muon spin rotation ({\mu}SR) experiments and model predictions based on a coupled spin-polarizability Hamiltonian. This novel finding supports the notion of strong magneto-dielectric (MD) effects being realized in ETO and opens new strategies in material design and technological applications.Comment: 9 pages, 4 figure

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure

    Enhancing Tc in field-doped Fullerenes by applying uniaxial stress

    Full text link
    Capitalizing on the two-dimensional nature of superconductivity in field-effect doped C60, we show that it should be possible to increase the transition temperature Tc by applying uniaxial stress perpendicular to the gate electrode. This method not only holds the promise of substantially enhancing Tc (by about 30 K per GPa), but also provides a sensitive check of the current understanding of superconductivity in the doped Fullerenes.Comment: 3 pages RevTe

    Structure and Phase Transitions of the 6, 6-Cyclopropane Isomer of C_ {61} H_ {2}

    Get PDF
    We have used x-ray powder diffraction and differential scanning calorimetry to study the crystalline structures and thermal behavior of the 6,6-cyclopropane isomer of C61H2. At room temperature, the C61H2 cyclopropane molecules, like those of the 6,5-annulene isomer and C60O epoxide, are orientationally disordered and crystallize on a face-centered-cubic lattice such that their methylene groups are statistically disordered among the octahedral voids. Unlike 6,5−C61H2 and C60O, the low-temperature structure is not Pa3¯, but rather a low-symmetry orthorhombic lattice in which a≈

    Hyperhoneycomb Iridate β-li2iro3 As A Platform For Kitaev Magnetism.

    Get PDF
    A complex iridium oxide β-Li(2)IrO(3) crystallizes in a hyperhoneycomb structure, a three-dimensional analogue of honeycomb lattice, and is found to be a spin-orbital Mott insulator with J(eff)=1/2 moment. Ir ions are connected to the three neighboring Ir ions via Ir-O(2)-Ir bonding planes, which very likely gives rise to bond-dependent ferromagnetic interactions between the J(eff)=1/2 moments, an essential ingredient of Kitaev model with a spin liquid ground state. Dominant ferromagnetic interaction between J(eff)=1/2 moments is indeed confirmed by the temperature dependence of magnetic susceptibility χ(T) which shows a positive Curie-Weiss temperature θ(CW)∼+40  K. A magnetic ordering with a very small entropy change, likely associated with a noncollinear arrangement of J(eff)=1/2 moments, is observed at T(c)=38  K. With the application of magnetic field to the ordered state, a large moment of more than 0.35  μ(B)/Ir is induced above 3 T, a substantially polarized J(eff)=1/2 state. We argue that the close proximity to ferromagnetism and the presence of large fluctuations evidence that the ground state of hyperhoneycomb β-Li(2)IrO(3) is located in close proximity of a Kitaev spin liquid.11407720
    • …
    corecore