58 research outputs found

    Equilibrium of Global Amphibian Species Distributions with Climate

    Get PDF
    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions

    Assessing the presence of shared genetic architecture between Alzheimer's disease and major depressive disorder using genome-wide association data

    Get PDF
    We are grateful to the families and individuals who took part in the GS:SFHS and UKB studies, and to all those involved in participant recruitment, data collection, sample processing and QC, including academic researchers, clinical staff, laboratory technicians, clerical workers, IT staff, statisticians and research managers. This work is supported by the Wellcome Trust through a Strategic Award, reference 104036/Z/ 14/Z. We acknowledge with gratitude the financial support received from the Dr Mortimer and Theresa Sackler Foundation. This research has been conducted using the GS:SFHS and UK Biobank (project #4844) resources. GS:SFHS received core funding from the Chief Scientist Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding Council [HR03006]. UKB was established using funding from the Wellcome Trust, Medical Research Council, the Scottish Government Department of Health, and the Northwest Regional Development Agency. DJP, IJD, TCR and AMM are members of the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross council Lifelong Health and Wellbeing Initiative (MR/K026992/1). TCR is supported by Alzheimer's Scotland, through the Marjorie MacBeath bequest. Funding from the Biotechnology and Biological Sciences Research Council and Medical Research Council is gratefully acknowledged. We are grateful for the use of summary data from the International Genomics of Alzheimer's Project and the Major Depressive Disorder working group of the Psychiatric Genomics Consortium.Peer reviewedPublisher PD

    Climate Change Hastens the Conservation Urgency of an Endangered Ungulate

    Get PDF
    Global climate change appears to be one of the main threats to biodiversity in the near future and is already affecting the distribution of many species. Currently threatened species are a special concern while the extent to which they are sensitive to climate change remains uncertain. Przewalski's gazelle (Procapra przewalskii) is classified as endangered and a conservation focus on the Qinghai-Tibetan Plateau. Using measures of species range shift, we explored how the distribution of Przewalski's gazelle may be impacted by projected climate change based on a maximum entropy approach. We also evaluated the uncertainty in the projections of the risks arising from climate change. Modeling predicted the Przewalski's gazelle would be sensitive to future climate change. As the time horizon increased, the strength of effects from climate change increased. Even assuming unlimited dispersal capacity of gazelles, a moderate decrease to complete loss of range was projected by 2080 under different thresholds for transforming the probability prediction to presence/absence data. Current localities of gazelles will undergo a decrease in their occurrence probability. Projections of the impacts of climate change were significantly affected by thresholds and general circulation models. This study suggests climate change clearly poses a severe threat and increases the extinction risk to Przewalski's gazelle. Our findings 1) confirm that endangered endemic species is highly vulnerable to climate change and 2) highlight the fact that forecasting impacts of climate change needs an assessment of the uncertainty. It is extremely important that conservation strategies consider the predicted geographical shifts and be planned with full knowledge of the reliability of projected impacts of climate change

    Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms

    Get PDF
    BACKGROUND: Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive. METHODS AND PRINCIPAL FINDINGS: We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world's tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport's rule for the birds of Sikkim region of the Himalaya. CONCLUSIONS AND SIGNIFICANCE: This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention

    The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin

    Get PDF

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject
    corecore