9 research outputs found

    Interaction Quench in Nonequilibrium Luttinger Liquids

    Full text link
    We study the relaxation dynamics of a nonequilibrium Luttinger liquid after a sudden interaction switch-on ("quench"), focussing on a double-step initial momentum distribution function. In the framework of the non-equilibrium bosonization, the results are obtained in terms of singular Fredholm determinants that are evaluated numerically and whose asymptotics are found analytically. While the quasi-particle weights decay exponentially with time after the quench, this is not a relaxation into a thermal state, in view of the integrability of the model. The steady-state distribution emerging at infinite times retains two edges which support Luttinger-liquid-like power-law singularities smeared by dephasing. The obtained critical exponents and the dephasing length are found to depend on the initial nonequilibrium state.Comment: 11 pages, 5 figure

    Influence of Coulomb interaction on the Aharonov-Bohm effect in an electronic Fabry-Perot interferometer

    Full text link
    We study the role of Coulomb interaction in an electronic Fabry-Perot interferometer (FPI) realized with chiral edge states in the integer quantum Hall regime in the limit of weak backscattering. Assuming that a compressible Coulomb island in a bulk region of the FPI is formed, we develop a capacitance model which explains the plethora of experimental data on the flux and gate periodicity of conductance oscillations. It is also shown that a suppression of finite-bias visibility stems from a combination of weak Coulomb blockade and a nonequilibrium dephasing by the quantum shot noise

    Tunneling into Nonequilibrium Luttinger Liquid with Impurity

    Full text link
    We evaluate tunneling rates into/from a voltage biased quantum wire containing weak backscattering defect. Interacting electrons in such a wire form a true nonequilibrium state of the Luttinger liquid (LL). This state is created due to inelastic electron backscattering leading to the emission of nonequilibrium plasmons with typical frequency ωU\hbar \omega \leq U. The tunneling rates are split into two edges. The tunneling exponent at the Fermi edge is positive and equals that of the equilibrium LL, while the exponent at the side edge EFUE_F-U is negative if Coulomb interaction is not too strong.Comment: 4+ pages, 5 figure

    Bosonization of Nonequilibrium Quantum Wire Networks

    No full text
    We develop a general approach to nonequilibrium nanostructures formed by one-dimensional channels coupled by tunnel junctions and/or by impurity scattering. As important applications of the formalism we consider tunneling into a voltage-biased quantum wire containing weak backscattering defects, electronic Fabry-Pérot and Mach-Zehnder interferometers realized in the integer quantum Hall systems, and the relaxation dynamics of a nonequilibrium Luttinger liquid after an interaction quench

    International Society for Therapeutic Ultrasound Conference 2016

    No full text
    corecore