1,574 research outputs found

    Differential diagnosis of dna viruses related to reproductive disorder on sows by multiplex-pcr technique

    Get PDF
    The newly emerged diseases caused by ASFV and PCV3 and their confirmed prevelance in Vietnam whereas most of available common commercial methods such as ELISA or realtime PCR designed for detecting single pathogen per reaction, highlighted a necessity for another diagnostic method to simultaneously detect and differentiate DNA viruses that are related to reproductive failures in sow herds including PCV2, PCV3, PPV, ASFV. In this communication, a diagnostic multiplex-PCR (mPCR) was established with pathogen-specific primers selected from previous studies and another set of primers designed for COX1 gene serving as an internal amplification control (IAC). The predicted products of PCV2, PCV3, PPV, ASFV and IAC were 702 bp, 223 bp, 380 bp, 278 bp and 463 bp, respectively. After optimization, the mPCR functioned specifically at 62°C. Results revealed the consistent detection limit at 100 copies/gene/reaction. In application, 185 serum samples from sows were used to examine the presence of the related pathogens. mPCR results showed that the mono-infection rate of PCV2, PCV3, PPV, and ASFV was 0% (0/185), 40% (74/185), 28.1% (52/185), and 48.1% (89/185), respectively. Regarding coinfection rate, the data indicated that coinfections of 2, 3 and 4 pathogens were 20%, 8.1% and 0% accordingly. In conclusion, the mPCR assay was successfully established and ready to serve for diagnosis of PCV2, PCV3, PPV and ASFV infection in reality with high specificity and sensitivity. It is a good contribution to a better understanding of the epidemiology of these diseases in swine

    Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate

    Get PDF
    Electrochemical reduction of carbon dioxide (CO2RR) to formate provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks powered using renewable electricity. Here, we hypothesized that the presence of sulfur atoms in the catalyst surface could promote undercoordinated sites, and thereby improve the electrochemical reduction of CO2 to formate. We explored, using density functional theory, how the incorporation of sulfur into tin may favor formate generation. We used atomic layer deposition of SnSx followed by a reduction process to synthesize sulfur-modulated tin (Sn(S)) catalysts. X-ray absorption near-edge structure (XANES) studies reveal higher oxidation states in Sn(S) compared with that of tin in Sn nanoparticles. Sn(S)/Au accelerates CO2RR at geometric current densities of 55 mA cm−2 at −0.75 V versus reversible hydrogen electrode with a Faradaic efficiency of 93%. Furthermore, Sn(S) catalysts show excellent stability without deactivation (<2% productivity change) following more than 40 hours of operation. With rapid advances in the efficient and cost-effective conversion of sunlight to electrical power, the development of storage technologies for renewable energy is even more urgent. Using renewable electricity to convert CO2 into formate simultaneously addresses the need for storage of intermittent renewable energy sources and the need to reduce greenhouse gas emissions. We report an increase of greater than 4-fold in the current density (hence the rate of reaction) in formate electrosynthesis compared with relevant controls. Our catalysts also show excellent stability without deactivation (<2% productivity change) following more than 40 hours of operation. The electrochemical reduction of carbon dioxide (CO2RR) offers a compelling route to energy storage and high-value chemical manufacture. The presence of sulfur atoms in catalyst surfaces promotes undercoordinated sites, thereby improving the electrochemical reduction of CO2 to formate. The resulting sulfur-modulated tin catalysts accelerate CO2RR at geometric current densities of 55 mA cm−2 at −0.75 V versus RHE with a Faradaic efficiency of 93%

    Resonant Diffraction Radiation from an Ultrarelativistic Particle Moving Close to a Tilted Grating

    Get PDF
    A simple model for calculating the diffraction radiation characteristics from an ultrarelativistic charged particle moving close to a tilted ideally conducting strip is developed. Resonant diffraction radiation (RDR) is treated as a superposition of the radiation fields for periodically spaced strips. The RDR characteristics have been calculated as a function of the number of grating elements, tilted angle, and initial particle energy. An analogy with both the resonant transition radiation in absorbing medium and the parametric X-ray radiation is noted.Comment: 17 pages, 12 figures, RevTe

    Equidistribution of zeros of holomorphic sections in the non compact setting

    Full text link
    We consider N-tensor powers of a positive Hermitian line bundle L over a non-compact complex manifold X. In the compact case, B. Shiffman and S. Zelditch proved that the zeros of random sections become asymptotically uniformly distributed with respect to the natural measure coming from the curvature of L, as N tends to infinity. Under certain boundedness assumptions on the curvature of the canonical line bundle of X and on the Chern form of L we prove a non-compact version of this result. We give various applications, including the limiting distribution of zeros of cusp forms with respect to the principal congruence subgroups of SL2(Z) and to the hyperbolic measure, the higher dimensional case of arithmetic quotients and the case of orthogonal polynomials with weights at infinity. We also give estimates for the speed of convergence of the currents of integration on the zero-divisors.Comment: 25 pages; v.2 is a final update to agree with the published pape

    Non-Markovian polymer reaction kinetics

    Full text link
    Describing the kinetics of polymer reactions, such as the formation of loops and hairpins in nucleic acids or polypeptides, is complicated by the structural dynamics of their chains. Although both intramolecular reactions, such as cyclization, and intermolecular reactions have been studied extensively, both experimentally and theoretically, there is to date no exact explicit analytical treatment of transport-limited polymer reaction kinetics, even in the case of the simplest (Rouse) model of monomers connected by linear springs. We introduce a new analytical approach to calculate the mean reaction time of polymer reactions that encompasses the non-Markovian dynamics of monomer motion. This requires that the conformational statistics of the polymer at the very instant of reaction be determined, which provides, as a by-product, new information on the reaction path. We show that the typical reactive conformation of the polymer is more extended than the equilibrium conformation, which leads to reaction times significantly shorter than predicted by the existing classical Markovian theory.Comment: Main text (7 pages, 5 figures) + Supplemantary Information (13 pages, 2 figures

    Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories <b>- </b>based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an <it>O</it>(<it>n/p</it>) time parallel algorithm has been given for this problem. Here <it>n </it>is the size of the input and <it>p </it>is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(<it>n</it>Σ) messages (Σ being the size of the alphabet).</p> <p>Results</p> <p>In this paper we present a Θ(<it>n/p</it>) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of <inline-formula><m:math name="1471-2105-11-560-i1" xmlns:m="http://www.w3.org/1998/Math/MathML"><m:mrow><m:mo>Θ</m:mo><m:mo stretchy="false">(</m:mo><m:mfrac><m:mrow><m:mi>n</m:mi><m:mi>log</m:mi><m:mo stretchy="false">(</m:mo><m:mi>n</m:mi><m:mo>/</m:mo><m:mi>B</m:mi><m:mo stretchy="false">)</m:mo></m:mrow><m:mrow><m:mi>B</m:mi><m:mi>log</m:mi><m:mo stretchy="false">(</m:mo><m:mi>M</m:mi><m:mo>/</m:mo><m:mi>B</m:mi><m:mo stretchy="false">)</m:mo></m:mrow></m:mfrac><m:mo stretchy="false">)</m:mo></m:mrow></m:math></inline-formula> (<it>M </it>being the main memory size and <it>B </it>being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster <b>- </b>both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem.</p> <p>Conclusions</p> <p>The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.</p

    Inhalation of ACE2-expressing lung exosomes provides prophylactic protection against SARS-CoV-2

    Get PDF
    Continued emergence of SARS-CoV-2 variants of concern that are capable of escaping vaccine-induced immunity highlights the urgency of developing new COVID-19 therapeutics. An essential mechanism for SARS-CoV-2 infection begins with the viral spike protein binding to the human ACE2. Consequently, inhibiting this interaction becomes a highly promising therapeutic strategy against COVID-19. Herein, we demonstrate that ACE2-expressing human lung spheroid cells (LSC)-derived exosomes (LSC-Exo) could function as a prophylactic agent to bind and neutralize SARS-CoV-2, protecting the host against SARS-CoV-2 infection. Inhalation of LSC-Exo facilitates its deposition and biodistribution throughout the whole lung in a female mouse model. We show that LSC-Exo blocks the interaction of SARS-CoV-2 with host cells in vitro and in vivo by neutralizing the virus. LSC-Exo treatment protects hamsters from SARS-CoV-2-induced disease and reduced viral loads. Furthermore, LSC-Exo intercepts the entry of multiple SARS-CoV-2 variant pseudoviruses in female mice and shows comparable or equal potency against the wild-type strain, demonstrating that LSC-Exo may act as a broad-spectrum protectant against existing and emerging virus variants

    Flow at the SPS and RHIC as a Quark Gluon Plasma Signature

    Get PDF
    Radial and elliptic flow in non-central heavy ion collisions can constrain the effective Equation of State(EoS) of the excited nuclear matter. To this end, a model combining relativistic hydrodynamics and a hadronic transport code(RQMD [17]) is developed. For an EoS with a first order phase transition, the model reproduces both the radial and elliptic flow data at the SPS. With the EoS fixed from SPS data, we quantify predictions at RHIC where the Quark Gluon Plasma(QGP) pressure is expected to drive additional radial and elliptic flow. Currently, the strong elliptic flow observed in the first RHIC measurements does not conclusively signal this nascent QGP pressure. Additional measurements are suggested to pin down the EoS.Comment: 4 pages, 4 figures. Revised. Included discussed of v_2 (p_t) vs. b and comparison to STAR dat
    • 

    corecore