29 research outputs found

    Long-term measurement of PM2.5 mass concentration using an electrostatic particle concentrator-based quartz crystal microbalance integrated with carbon dioxide aerosol jets for PM sensing in remote areas

    Get PDF
    Fine particulate matter (PM2.5) is a major environmental health risk. Several instruments based on the quartz crystal microbalance (QCM) have been developed for PM2.5 measurement because of their accurate, sensitive, real-time, and low-cost mass measurements. However, prolonged or non-uniform deposition on the quartz crystal can cause nonlinear responses between frequency shifts and mass deposition, and its frequent manual cleaning with wet sponges is required. These disable long-term measurements of the instruments, thus limiting their applications in remote areas. Herein, we present a new PM2.5 instrument called qEPC-Snow. This instrument consists of a QCM crystal embedded in an electrostatic particle concentrator (EPC) for collection and sensing of PM2.5 and a carbon dioxide aerosol (snow) jet unit for residue-free, rapid, effective, and non-destructive cleaning of the crystal. Laboratory tests were conducted with aerosolized 100-nm and 2-mu m polystyrene latex microspheres as PM2.5 representatives to evaluate (i) frequency responses and (ii) mass sensitiveness of qEPC-Snow, (iii) particle removal efficiencies, and (iv) reuse of the used crystals. Experimental results demonstrated high removal efficiencies (approximately 99.9% for both particle sizes) and statistical similarity between the initial and cleaned QCM crystals in the frequency shift-mass deposition relationship, thereby enabling measurement for more than one month without demounting the crystals. The mass sensitivity was 57.34 (Hz/mu g) with R-2 = 0.9904, corresponding to 0.05667 [(Hz/min)/(mu g/m(3))] in mass concentration sensitivity for the PM2.5 representatives. The influence of particle sizes on qEPC-Snow's frequency behaviors will also be discussed in detail

    Measurement of PM2.5 Mass Concentration Using an Electrostatic Particle Concentrator-Based Quartz Crystal Microbalance

    Get PDF
    Particulate matter (PM) is one of the most critical air pollutants, and various instruments have been developed to measure PM mass concentration. Of these, quartz crystal microbalance (QCM) based instruments have received much attention. However, these instruments are subject to significant drawbacks: particle bounce due to poor adhesion, need for frequent cleanings of the crystal electrode, and non-uniform distribution of collected particles. In this study, we present an electrostatic particle concentrator (EPC)-based QCM (qEPC) instrument capable of measuring the mass concentration of PM 2.5 (PM smaller than 2.5 ??m), while avoiding the drawbacks. Experimental measurements showed high collection efficiencies (~99% at 1.2 liters/min), highly uniform particle distributions for long sampling periods (up to 120 min at 50 ??g/m 3 ), and high mass concentration sensitivity [0.068(Hz/min)/(??g/m 3 )]. The enhanced uniformity of particle deposition profiles and mass concentration sensitivity were made possible by the unique flow and electrical design of the qEPC instrument

    Spectral Efficiency Analysis of Hybrid Relay-Reflecting Intelligent Surface-Assisted Cell-Free Massive MIMO Systems

    Get PDF
    A cell-free (CF) massive multiple-input-multiple-output (mMIMO) system can provide uniform spectral efficiency (SE) with simple signal processing. On the other hand, a recently introduced technology called hybrid relay-reflecting intelligent surface (HR-RIS) can customize the physical propagation environment by simultaneously reflecting and amplifying radio waves in preferred directions. Thus, it is natural that incorporating HR-RIS into CF mMIMO can be a symbiotic convergence of these two technologies for future wireless communications. This motivates us to consider an HR-RIS-aided CF mMIMO system to utilize their combined benefits. We first model the uplink/downlink channels and derive the minimum-mean-square-error estimate of the effective channels. We then present a comprehensive analysis of SE performance of the considered system. Specifically, we derive closed-form expressions for the uplink and downlink SE. The results reveal important observations on the performance gains achieved by HR-RISs compared to conventional systems. The presented analytical results are also valid for conventional CF mMIMO systems and those aided by passive reconfigurable intelligent surfaces. Such results play an important role in designing new transmission strategies and optimizing HR-RIS-aided CF mMIMO systems. Finally, we provide extensive numerical results to verify the analytical derivations and the effectiveness of the proposed system design under various settings

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    QCM ????????? ???????????? ????????? ?????? ?????? ??????

    No full text
    corecore