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ABSTRACT Fine particulate matter (PM> 5) is a major environmental health risk. Several instruments
based on the quartz crystal microbalance (QCM) have been developed for PM» 5 measurement because of
their accurate, sensitive, real-time, and low-cost mass measurements. However, prolonged or non-uniform
deposition on the quartz crystal can cause nonlinear responses between frequency shifts and mass deposition,
and its frequent manual cleaning with wet sponges is required. These disable long-term measurements
of the instruments, thus limiting their applications in remote areas. Herein, we present a new PM> s
instrument called qEPC-Snow. This instrument consists of a QCM crystal embedded in an electrostatic
particle concentrator (EPC) for collection and sensing of PM3 5 and a carbon dioxide aerosol (snow) jet unit
for residue-free, rapid, effective, and non-destructive cleaning of the crystal. Laboratory tests were conducted
with aerosolized 100-nm and 2-pum polystyrene latex microspheres as PM» 5 representatives to evaluate
(1) frequency responses and (ii) mass sensitiveness of gEPC-Snow, (iii) particle removal efficiencies, and
(iv) reuse of the used crystals. Experimental results demonstrated high removal efficiencies (approximately
99.9% for both particle sizes) and statistical similarity between the initial and cleaned QCM crystals in
the frequency shift-mass deposition relationship, thereby enabling measurement for more than one month
without demounting the crystals. The mass sensitivity was 57.34 (Hz/ug) with R* = 0.9904, corresponding
t0 0.05667 [(Hz/min)/(1x g/m3)] in mass concentration sensitivity for the PM 5 representatives. The influence
of particle sizes on qEPC-Snow’s frequency behaviors will also be discussed in detail.

INDEX TERMS Carbon dioxide snow cleaning, electrostatic particle concentrator, PM2.5 mass concentra-
tion measurement, quartz crystal microbalance, remote sensing.

I. INTRODUCTION

Atmospheric pollution has several detrimental impacts on
human health and is a significant concern for the global
community [1]. Particulate matter (PM), a major air pollutant,
originates from several sources such as traffic, fuel burn-
ing, natural dust, and industrial activities [2]. PM with an
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aerodynamic diameter of 2.5 pm or less (PM> s5) has attracted
significant attention [3] because these fine particles can easily
pass through the filtration of nose hairs and penetrate deeply
into the lung [4]. Moreover, PM»> 5 can carry toxic matter
such as viruses and bacteria into a human lung, increasing the
prevalence of the respiratory disease [5], [6] and necessitating
measuring its concentration level.

Many instruments for PM mass concentration measure-
ment using principles such as radiometric (e.g., beta gauge
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attenuation), gravimetric, optical, and microbalance methods
have been presented [7]. Beta gauge attenuation is one of
the most extensively used methods for PM mass concentra-
tion measurement. It uses a radiometric source to emit beta
particles and then measures the degree of their attenuation
through a collected mass, where the attenuation is propor-
tional to the collected mass. This method is straightforward
and relatively simple [8]. However, its major drawbacks are
the use of radioactive sources and the necessity of long-time
sampling to obtain sufficient responses [9]. Another common
technique involves a gravimetric approach using filters or
impactors. The collecting plate is weighed with a precise
balance before and after aerosol deposits [10]. Although
simple and accurate in measurement [9], gravimetric meth-
ods are time-consuming because of long sampling periods
for sufficient mass collection and filter weighing steps [11].
PM mass concentration can also be measured with optical
instruments, which usually rely on light scattering. These
instruments offer high sensitivity [8], ease of use, and low
power consumption [12], [13]. However, a primary disadvan-
tage of such methods is that the amount of scattering light
depends strongly on diverse particle characteristics such as
size, shape, density, and refractive index [8], [9].

Instruments based on the quartz crystal microbal-
ance (QCM) have also been developed for PM,s mass
concentration measurement [14]-[16]. In contrast to optical
instruments, QCM can directly measure the mass deposited
on its oscillating (electrode) region [17]. These instruments
use a QCM crystal as both a collecting spot and a sens-
ing element. PMs can be guided toward the QCM crys-
tal electrode by impaction [14], [16], [18] or by electrical
forces [15], [19]. These instruments possess high sensitivity,
short sampling periods, low cost, and real-time and accurate
measurement [20], [21].

A significant, long-standing weakness of these instru-
ments is that prolonged and/or non-uniform exposures can
cause overloading (i.e., the formation of multiple layers of
deposited particles) on the crystal electrode [22]. This over-
loading can cause a breakdown of the linear response between
deposited mass and frequency shift because multiple layers
of mass deposition can lead to weak bonding with freshly
deposited aerosol particles [23]. Thus, it is critical to clean
the quartz crystal regularly to ensure long-term, accurate
measurements [23], [24].

Several methods are currently used to clean the QCM
crystal after aerosol particles are accumulated, such as wiping
with a damp cloth [25] or a wet sponge [19]. However,
the QCM crystal must be demounted from the body of the
instrument and then cleaned and dried manually, hindering
long-term or unmanned measurements in remote areas.

Non-liquid-based cleaning techniques have also been
explored. Compressed air can be used for surface decontami-
nation. However, this technique is subject to very low removal
efficiencies for sub-micrometer and micrometer-sized
particles [26]. A carbon dioxide (CO;) snow jet was proposed
to overcome this drawback, with many studies conducted for
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its use in the semiconductor industry [27]. This technique
relies on mechanical impact and chemical interactions of
solid CO, (dry ice) particles generated through a nozzle.
These dry ice particles are bombarded onto the contami-
nants along with gaseous nitrogen (N;) and CO;, remov-
ing deposited sub-micrometer to micrometer-sized particles
effectively. This technique showed a residue-free, rapid,
effective, and non-destructive cleaning method for a variety
of substrates and contaminants [28]—[30].

In this study, we present an electrostatic particle concen-
trator (EPC)-based QCM (qEPC) integrated with CO, aerosol
jets for the long-term measurement of PM» 5 mass concentra-
tion in remote areas, referred to as gEPC-Snow. It is similar
to the qEPC we developed previously [15], [31], [32], with a
CO; aerosol jet unit to enable cleaning the crystal without
demounting. One inlet and two outlets were positioned on
top of the instrument. A quartz crystal was located on the
bottom side, functioning as a collection spot and a sensing
element. The top electrode of the crystal was wired to a
negative DC voltage potential while all the other walls of
qEPC-Snow were electrically biased to the ground. This elec-
trical configuration enhanced the electric field strength over
the quartz crystal and concentrated aerosols evenly on the
quartz crystal electrode [15], [31], [32], reducing the possi-
bility of overloading. A cleaning unit consisting of CO, and
N, gas nozzles was also located on the side of qEPC-Snow
for repetitive crystal cleaning. Several characteristics, such as
PM; 5 measurements, removing efficiencies, and long-term
measurements via the crystal regeneration, will be provided.

Il. EXPERIMENTAL METHODS

A. gEPC-SNOW FABRICATION

Fig. 1A illustrates a 3D drawing of gEPC-Snow developed in
this study. The instrument was modelled in Solidworks soft-
ware (Dassault Systemes Corporation, version 2019). One
inlet and two outlet ports, used sequentially for aerosols
injection and withdrawing, were located on the top of the
instrument. A QCM crystal holder (28 mm in diameter and
23 mm in height) was fixed on the bottom center of the
collection chamber. Two arms were fixed on the bottom
part and served as a support of the aerosol nozzle package
(K6-10DG-A, Applied Surface Technologies, NJ). This noz-
zle package was positioned at the side of the chamber body,
with its injector head through a built-in hollow on the side-
wall. This hollow was designed so that its center line (dashed
line in Fig. 1A) was set at an angle of 45° to the QCM crystal
surface. Fig. 1B illustrates the detailed structure of the QCM
crystal holder. A QCM crystal (QCM5140CrAul120-050-Q,
Quartz Pro AB, Sweden; diameter: 14 mm) was sandwiched
between the cap and the body of the holder. A ring was used
to secure the crystal anti-rotationally while screwing the cap
via threaded joints. All parts of gEPC-Snow were constructed
of aluminum except that the QCM crystal holder (body, cap,
and ring) was constructed of ABS plastic. Fig. 1C illustrates
an image of the manufactured qgEPC-Snow.
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FIGURE 1. Design drawings and an actual image of qEPC-Snow device. (A) A 3D model and major parts of qEPC-Snow. Partial section view illustrates
QCM crystal and cleaning injector’s location inside qEPC-Snow. Two dash lines indicate center lines. (B) 3D sub-drawing demonstrates the QCM crystal

holder structure and how the QCM crystal is fixed inside qEPC-Snow. (C) Photograph of the fabricated qEPC-Snow.

B. EVALUATION SETUP

The experimental schematic of gEPC-Snow is similar to that
of our previous studies [15], [33] (Fig. 2A). Clean and dry
compressed air was generated through a clean air supplier
unit (Dekati, Finland). The downstream airflow was then
divided into two branches. One airflow branch was injected
into a three-jet Collison nebulizer (Mesa Laboratories, Den-
ver, CO) at 3 liters per minute (LPM), which contained
a diluted suspension of polymer beads (either 100 nm at
0.013wt% or 2.0 um at 0.02wt%; Thermo Scientific, US)
in DI water, for producing monodisperse aerosol particles.
These particles were passed through a diffusion dryer (HCT,
South Korea) and then a diffusion neutralizer (model 5.622,
GRIMM, Germany) equipped with an AM-241 radioactive
source to remove water vapors from the aerosolized particles
and neutralize the particles, respectively. These neutralized
particles were diluted with another clean air stream (10 LPM
for 2.0-pum; and 7.5 LPM for 100-nm particles) from the other
branch. All airflow rates were precisely controlled using mass
flow controllers (model 5850E, Brooks Instrument, PA).

A three-way manifold was used to extract the aerosol
particles from the mixing line (line #1). These airborne par-
ticles had concentrations of 53.86+8.5 pg/m?® for 100-nm
beads and 50.749.3 ,ug/m3 for 2.0-um beads, and they were
moved into a corona charger with a needle wired to a volt-
age of +3kV (SJ-2000S, Sejin electronics, Korea) and a
case grounded for unipolar-charging airborne particles. These
charged particles were fed to gEPC-Snow’s inlet port. At the
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outlet ports of gEPC-Snow, a scanning mobility particle sizer
(SMPS; model 5.416, GRIMM, Germany) or an optical par-
ticle sizer (OPC; model 1.109, GRIMM, Germany) was con-
nected to count the actual concentration level of the aerosols
for 0.1-um and 2.0-pum beads, respectively (Fig. 2B). A DC
voltage of -10kV (SJ-2000S, Sejin electronics, Korea) was
wired to the top electrode of a QCM crystal while the other
remaining parts of gEPC-Snow were grounded. Signal acqui-
sition of the QCM crystal was performed by a QCM controller
(QCM200, Stanford Research Systems, US).

A dual gas unit consisting of two separate nozzles of
CO; and N was used to generate CO;, aerosols. Two
high-purity gases (DEOKYANG CO., LTD, South Korea) of
CO2 (99.99%) and Nj (99.999%) were fed to both control
valves for each cycle (Fig. 2C), which helped to adjust the gas
streams at desired pressures (5.5 MPa for CO; and 0.7 MPa
for N») and generate dry ice particles (Fig. 2D) [29].

lll. METHODS FOR qEPC-SNOW EVALUATION

A. METHODS FOR CALCULATING THE ACCUMULATION OF
MASS DEPOSITION AND FREQUENCY SHIFT

The mass deposition on the QCM crystal electrode after each
collection period was calculated as follows:

# L
mdeposition[ﬂg] =N |:Zi| 0 [%] t[min]mp (gl (D

where N is the number concentration, particles/liter (#/L),
extracted from OPC or SMPS data, Q is the volume flow
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FIGURE 2. Setup for qEPC-Snow device evaluations. (A) Experimental schematic. CO, and N, cylinders are not depicted. (B) Particle size distributions of
DI water alone and 2-pm and 100-nm particles in DI water, measured by OPC (blue) and SMPS (red), respectively. The concentration level of each size was
normalized with that of peak size. (C) One aerosol injection cycle. The lime and red colors sequentially indicate the open and close state of each control
valve. (D) Photograph of experimental setup.

rate, 1.2 LPM, t is the collection time, equal to 30 minutes B. METHODS FOR FREQUENCY SHIFT RESPONSE
in our study, and my, is the mass of a single polystyrene latex EVALUATIONS
(PSL) particle. Thus, the accumulation of mass deposition First, the fabricated qEPC-Snow was connected to the QCM
and frequency shift can be obtained as follows: controller to obtain initial frequency signals (Fg) for 10 min-
utes. The instrument was then disconnected from the con-
Maccumulation [ €] =Z Mprevious[L8] + Meurrens 18] (2)  troller and connected to the high voltage supply. Next,

he generation of the aerosol particles was initiated, and a
AF, on [HZ] = AFpreviousIHz] + AF, H7) 3) Wee p .
accumulation [FZ] Z previous | He] currene [F12] (3) high voltage (4-3kV) was applied to the corona charger for

where m and AF sequentially represent the deposited mass 5 minutes. A collection step was performed by turning on
and respective frequency shift. The subscripts “‘accumula- the high voltage (—10kV) for 30 minutes. Afterwards, the
tion,” “‘previous,” and “‘current” denote the accumulated, —10kV high voltage source was removed, and qEPC-Snow
previous, and current measurement values, respectively. was re-connected to the QCM controller to obtain frequency

90718 VOLUME 9, 2021



N. D. Ngo, J. Jang: Long-Term Measurement of PM2.5 Mass Concentration Using EPC-Based QCM Integrated

IEEE Access

signals (F;) for 10 minutes. The index j indicates each collec-
tion step (j = 1— 6) for a total collection time of 180 min. The
frequency shifts during each collection interval (30 minutes)
were calculated by subtracting the current signals (F;j) from
the initial signals (Fp). The accumulation of mass deposition
and respective frequency shifts were determined as explained
in Section III-A.

C. METHODS FOR CLEANING EFFICIENCY EVALUATIONS
After the 180-min particle deposition, the loaded QCM
crystal was demounted from qEPC-Snow. The crystal was
positioned under a fluorescence optical microscope (Nikon
Eclipse 80i) equipped with a mono-color camera (Cool-
SNAPTM DYNO, PHOTOMETRICS) to capture images of
the initial particle deposition. The crystal was then mounted
again into qEPC-Snow and exposed to aerosol jets. The
treated crystal was again removed from qEPC-Snow, and
images of the crystal electrode were captured. The cleaned
QCM crystal was reused ten times. A combination of 10-min
initial frequency measurement, a total of 180-min collection
with 10-min frequency measurements between each collec-
tion period, and subsequent snow cleaning were conducted
eleven times.

Three different cleaning procedures were conducted to
determine which provided the best cleaning performance.
The first involved N (pressure = 0.7 MPa) gas stream
alone, and the other two performed CO; snow cleanings,
which combine both CO, (pressure = 5.5 MPa) and N
(pressure = 0.7 MPa) gaseous jets, with different injection
cycles (1 and 2 cycles). One injection cycle consists of a
10-second duration of CO; aerosol during a 20-second dura-
tion of Ny gas (Fig. 2C). For QCM crystals covered with
2-pm particles, the cleaning efficiency for each of the three
removal procedures was calculated as follows:

n [%] = 100% 4)

N1 [#]

where N; and N, are the numbers of total particles (#)
counted on the crystal electrode before and after treating with
aerosol cleaning jets, respectively. The method for counting
particles on the crystal electrode was described in our previ-
ous study [15]. ImagelJ software (version 1.53e) was used to
count the number of particles on the images captured. These
data were used to calculate the total number of particles on
the entire QCM crystal electrode.

The above particle counting methods were invalid for the
crystal covered with 100-nm particles because of multiple-
layer formation over the QCM crystal electrodes. Thus,
the cleaning efficiencies were estimated as follows:

F.[Hz] — Fg [Hz]

2%l = 1001"0 [Hz] = Fo [H2] ©)
where F, is the fundamental resonance frequencies (Hz) of
the QCM crystals cleaned for reuse, Fy is the frequency
(Hz) before mass deposition of the QCM crystals, and Fg
is the frequency (Hz) after 180-min mass deposition of the
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QCM crystals, corresponding to j = 6 in Section III-B.
Furthermore, the efficiency of the snow cleaning was also
confirmed by visually examining scanning electron micro-
scope (SEM) micrographs (Cold FE-SEM S4800, Hitachi
High-Technologies, Japan) of the crystal electrode before and
after snow cleaning.

D. STATISTICAL METHOD FOR QCM CRYSTAL REUSE
ESTIMATION

QCM crystals were reused ten times, and the linear fitting
with a zero intercept was used to determine its mass sensi-
tivities each time to assess reusability. An analysis of vari-
ance (ANOVA) was used to statistically compare the slopes
of the QCM crystal between initial use (Sg) and each reuse
(S; with i = 1, 2,...10). The confidence level was set to
95%, and p > 0.05 indicates that the compared sets are not
statistically different. All data evaluations were performed in
Microsoft Excel software using its Data Analysis add-in.

E. METHODS FOR DETERMINING qEPC-SNOW'’S MASS
CONCENTRATION SENSITIVITY

The mass sensitivities (Sy,) were determined by linear fit
analyses with a zero intercept for all measurement points. The
mass concentration sensitivity (Sconc) can be computed from
the mass sensitivity (Sy,) value as follows:

Hz/ . 3
Seone [Mg/mm} = Si [ﬁ] 0 [i} 1073 ["i} ©)
/3 ug min L
IV. RESULTS AND DISCUSSION
This section presents the frequency measurements, cleaning
efficiencies, QCM crystal reusability, linear response ranges,
and sensitivities of qEPC-Snow. The measurement of fre-
quency shifts due to added mass is a primary consideration of
any QCM-based instrument. Removals of deposited particles
from the crystal electrodes are of great interest for reusing
the crystal because they significantly affect the long-term
measurement of gEPC-Snow. The mass sensitivity [Hz/ug]
was experimentally obtained with two representatives of
PM3 5 (100-nm and 2-um diameter particles) and compared
with the value predicted by the Sauerbrey equation because
commercial PM> 5 instruments measure a particle size range
of 0.1 — 2.5 um. Eventually, the mass concentration sensitiv-
ity [(Hz/min)/(,ug/m3)] calculated by (6) was presented and
compared with another QCM based sensor.

A. FREQUENCY MEASUREMENTS

A shift in a QCM crystal’s resonant frequency is linearly
proportional to the mass deposited on it, referred to as
the Sauerbrey behavior [34]. This linearity is valid only
when the mass is firmly attached to the crystal electrode
in the form of rigid films [35]. Unfortunately, the shear
motion of the QCM crystal and the absence of electrical
force during the frequency measurements might rupture or
loosen the mass-to-electrode contacts [35], especially in the
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FIGURE 3. Frequency shift measurements of qEPC-Snow for the 2-um-diameter particles under various QCM crystal conditions. A0 represents the
responses of the initially used QCM crystal. A1 to A10 represent crystal’s responses after different (1st-10th) cleaning stages. Symbol éf denotes shifts in

resonant frequencies after each collection interval (30 minutes).

case of multiple-layer formation. This can cause nonlinear
frequency-mass relationships [34], [36].

The frequency shifts of the initial (Fig. AO) and reused
QCMs (Fig. Al to Fig. A10) were measured with various
collection periods for 2-um aerosolized particles (Fig. 3).

90720

The measured signals were nearly constant, with a standard
deviation (S.D.) of 0.5 Hz, during 10 min at all collec-
tion periods. The shifts in resonance frequencies after each
collection interval (30 min), denoted by &f, were almost
equal with an S.D. of 9.5 Hz. These two imply sufficient
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attachments of 2-um particles on the QCM electrodes, lead-
ing to the linear behavior even at high mass deposition
(18 pug) corresponding to 180-min collections. The frequency
shifts relative to the initial frequency measurements at the
same collection periods of AO—A10 were not identical, which
may be due to the inconsistency in the concentration of
the generated aerosols and/or residual particles not detached
completely from the crystals by the aerosol cleaning. The
particle concentration of the initial suspension is not invari-
ant with time when the particles in the suspension are
nebulized [37].

The same behaviors were also observed for the QCM crys-
tal tested with 100-nm particles when the collection periods
were 120 min and shorter. For longer periods, the §f tended
to decrease as the collection time increased (Fig. 4). Given
the high collection efficiency (~99%), the reductions suggest
that fresh 100-nm particles were deposited to form multiple
layers on the crystal electrode. These newly formed layers
were loosely bound to the inner layers, thus not effectively
sensed by the crystal and causing the nonlinear behavior. The
frequency measured for the collection periods longer than
120 min remained nearly constant (S.D. = 0.48 Hz). This
result reveals that the outer particles to inner layer contacts
occurred instantly during the collection periods and the con-
tacts were so weak that many of fresh particles did not fully
attach to the sensor crystal surface, not contributing to any
positive shift in the resonance frequency, and only a few fresh
particles attached to the sensor crystal surface. These obser-
vations were essential for further evaluations of gEPC-Snow
because any disturbance in frequency shifts might produce
nonlinear responses leading to inaccurate measurements of
qEPC-Snow.

B. CLEANING AND RECYCLING OF THE QCM CRYSTALS
Fluorescence and SEM images of the QCM crystal electrode
were taken before and after treatments with various cleaning
strategies (Fig. 5). Low cleaning efficiencies were observed
for the N, gas flow cleaning, whereas high cleaning effi-
ciencies were observed with the CO; snow cleanings for
both particle sizes tested. Fundamentally, the adhered par-
ticles can be removed when the removal forces exceed the
adhesion forces exerted on the particles by the surface [38],
in which the adhesion forces are proportional to the particle
diameter. The aerodynamic drag force exerted on adhered
particles by gas flow is proportional to particle diameter
squared [39]. Moreover, a rapid decrease in the velocity in
the boundary layer causes an immediate reduction in the drag
force required to dislodge the particles [26]. Consequently,
the N» gas stream could not sufficiently detach the deposited
particles from the crystal electrode, resulting in low cleaning
efficiencies of approximately 10.52% for the 2-um particles.
In contrast, the snow cleaning removed adhered particles
by momentum transfer from cryogenic dry ice particles to
the adhered particles, dislodging them from the crystal elec-
trode [26]. The dislodged particles were then easily carried
away by the gas flow over the surface. In this study, the use
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of this cleaning method confirmed high cleaning efficiencies,
approximately 99.99% for the 2-um particles and 99.98% for
100-nm particles even with only one cycle, corresponding to
20 seconds. This cleaning period is much lower than those
of commercial instruments, such as Kanomax Piezobalance
Dust Monitor 3522, Respirable Aerosol Mass Monitor 3511,
and Respirable Aerosol Mass Monitor 8511, requiring at least
2 min to clean and dry the QCM crystal manually [40]-[42].
Furthermore, although the cleaning efficiencies were over
99.9%, several of attached particles remained on the surfaces
(Fig. 5) with and without being noticed by the measurements,
which caused slight differences in the initial reference fre-
quencies between each stage.

The frequency shifts of qEPC-Snow were measured as
functions of accumulated mass for two sizes of particles,
100 nm (Fig. 6A) and 2 um (Fig. 6B), during the initial
and ten reuse stages of the QCM crystal using the snow
cleaning. In each stage, 10-min initial frequency measure-
ment, six 30-min collections with six 10-min frequency mea-
surements, and subsequent snow cleaning were conducted.
The mass sensitivities measured between the cleaned and the
initial crystals did not differ significantly (p > 0.057 for 2-um
particles and p > 0.091 for 100-nm particles) (Table 1) based
on the 95% confidence intervals. This means that the crystals
were free of mechanical damage such as crystal deformation
or breaks due to the impingement of the jets. The generated
dry ice particles, a sublimable substance, had a range of 0.4 to
9.6 um with a peak of 0.7 um, and the mechanical impact on
the substrate was minimal [43].

These crystals were used for collection periods up to
1,980 minutes through ten-fold reuse. Given that the PM mea-
surement can be performed each per hour for 3-5 min [15],
these total collection periods correspond to 16.5-27.5 days
without demounting the crystals. The total collection peri-
ods can be extended to more than a month by the addi-
tional aerosol cleaning without any residues of CO; aerosols,
demonstrating that our proposed system can be used for
long-term monitoring in remote areas. In contrast, frequent
wet cleaning (e.g., every 40 min or so with a wet sponge) is
required for a commercial dust monitor [40].

C. LINEAR RESPONSE RANGES AND MASS SENSITIVITIES
Figure 6A and 6B illustrate the linear response ranges of
qEPC-Snow for both sizes of the particles. gEPC-Snow
exhibited linear responses up to 9.2 ug (R> = 0.9926)
and 18 pug (R = 0.9952) of mass loadings for 100-nm
and 2-um particles, respectively. The variation in the mass
sensitivity after each cleaning was measured, and the aver-
age mass sensitivity and relative standard deviation (RSD)
were 57.8 [Hz/ug] and 4.2%, respectively (Fig. 6C). Hence,
qEPC-Snow can ensure reasonable measurements of recycled
QCM crystals.

The difference between the two linear response limits was
investigated by visually examining the particle deposition
structures on the crystal electrodes. The closed views of
these structures taken by SEM images (Fig. 6D) revealed
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FIGURE 4. Frequency shift measurements of qEPC-Snow for 100-nm diameter particles under various QCM crystal conditions. BO represents responses of
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frequencies after each collection interval (30 minutes).

that the 2-pm particles were deposited as a single layer even
at approximately 18 g, or the nonlinearity threshold. The
corresponding number of particles was 4.05 x 10°, and the
corresponding number of layers was 0.17 when we com-
pared the total projected areas of all the particles with the
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crystal electrode area. This result indicates that most parti-
cles deposited directly stuck to the crystal electrode without
forming even a single layer. Moreover, high and non-uniform
electrical fields generated in gEPC-Snow [15], [31] might
strengthen the particle—electrode contacts more firmly. These
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FIGURE 5. Fluorescence optical images (20X) of 2-um and high-magnification (30000X) of SEM images of 100-nm particle sizes on
QCM crystal electrodes under various cleaning conditions.

TABLE 1. p-values of the analysis of variance (ANOVA) tests of mass sensitivities (Hz/..g) relative to non-reused and initial crystal.

Particle size
n-th cleaning step

2 pm 100 nm
1 0.0571 0.2551
2 0.0589 0.0919
3 0.3957 0.1611
4 0.8320 0.3446
5 0.1081 0.5450
6 0.7900 0.5455
7 0.8211 0.2084
8 0.0717 0.3557
9 0.5348 0.1241
10 0.1482 0.1241

two may lead to the linear response of the QCM crystal even

at large mass loadings.

Similarly, the deposition of the 100-nm particles exhibited
a single layer below the threshold of linear response, 9.2 g,

VOLUME 9, 2021

as visualized in Fig. 6E. The corresponding number
of 100-nm particles was 1.66 x 109, and the correspond-
ing number of layers was 1.74. The results revealed single
particles plus their agglomerates (252+57 nm in size) on the
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electrode.

crystal surface, with the most severe aggregation for small
polymer particles (~100 nm) [44]. In contrast, multiple layers
and particle agglomerations on the crystal electrode were

significant above the linear response limit (e.g., 11.2 ug),
as in Fig. 6F. In such a structure, fresh particles cannot
firmly adhere to the crystals’ electrode. These agglomerations
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cannot be effectively sensed, so the linearity between the
frequency shift and mass change was not maintained.

The measured mass sensitivities were 56.79 (Hz/ung)
with R? = 0.9926 for 100-nm particles (Fig. 6A) and
58.74 (Hz/ng) with R2 = 0.9952 for 2-um particles
(Fig. 6B). The inequality between the two sensitivities results
from differences in particle size, affecting how much the
particles gain electrical charges and agglomerate, hence the
deposition structure on a crystal. A zero intercept linear fit
of all datasets in the linear response ranges of gEPC-Snow
exhibited a mass sensitivity of 57.34 (Hz/ug) with R> =
0.9904 (Fig. 7). This sensitivity is greater than the theoretical
value, 50 (Hz/ug), predicted by the Sauerbrey equation. The
reasons for this discrepancy are that the Sauerbrey equation
assumes that the properties of the added mass such as density,
shear modulus, and acoustic impedance are identical to those
of quartz [17], [45], and the added mass is a completely rigid,
infinitesimal, and uniform film, which is not the case for the
aerosol particle capture in this study [23], [46].

Finally, qEPC-Snow aims to measure the PM2.5 mass
concentration in practice. The mass concentration sensitivity
was calculated based on (6) as 0.05667 [(Hz/min)/(,ug/m3)].
This value is slightly greater than that obtained from
another QCM-based PM sensor using impaction,
0.05540 [(Hz/min)/(,ug/m3 )] [21]. This difference was made
because qEPC-Snow had higher collection efficiencies and a
more even distribution of aerosol deposits on the QCM crystal
electrodes [15].

V. CONCLUSION

In this study, we present a novel PMj 5 instrument called
qEPC-Snow for long-term measurements of PMj; 5 mass con-
centration and experimental evaluations obtained by exposing
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the instrument to two PMj 5 representatives, 100-nm and
2-um PSL. The instrument consists of an EPC to collect
charged aerosols evenly onto an embedded QCM crystal and
a dual gas unit located on the EPC’s side for particle removal.
The laboratory tests confirmed that (i) qEPC-Snow’s fre-
quency response was linear up to 9.2 ug of all PM» s repre-
sentatives deposition, resulting in 57.34 (Hz/ug) with R? =
0.9904 for mass sensitivity or 0.05667 [(Hz/min)/(ug/m3)]
for mass concentration sensitivity, (ii) the collected aerosols
can be effectively removed from the QCM crystal, over 99.9%
for both sizes, thus making the crystal available for reuse ten
times, and (iii) in comparison with several commercial PM
measurement instruments, qEPC-Snow exhibits outstanding
performance, such as longer aerosol collection time while
retaining the linear behavior of the QCM, and a much shorter
period required to clean the crystal; drying is not needed
because of sublimation of dry ice particles upon their contacts
on the crystal surface (supplementary video). Given these fea-
tures, QqEPC-Snow can measure PM; 5 for more than a month
without demounting the crystals for their cleaning. Therefore,
the demonstrated platform can be potentially applied to air
quality monitoring in remote areas.
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