840 research outputs found

    Meteorological assessment of SRM exhaust products' environmental impact

    Get PDF
    The environmental impact of solid rocket motor (SRM) exhaust products discharged into the free air stream upon the launching of space vehicles that depend upon SRM boosters to obtain large thrust was assessed. The emission of Al2O3 to the troposphere from the SRMs in each Shuttle launch is considered. The Al2O3 appears as particles suitable for heterogeneous nucleation of hydrochloric acid which under frequently occurring atmospheric conditions may form a highly acidic rain capable of damaging property and crops and of impacting upon the health of human and animal populations. The cloud processes leading to the formation of acid rain and the concentration of the acid that then reaches the ground, and the atmospheric situations that lead to the production of cloud and rain at and near a launch site, and the prediction of weather conditions that may permit or prohibit a launch operation are studied

    Acid rain: Microphysical model

    Get PDF
    A microphysical model was used to simulate the case of a ground cloud without dilution by entrainment and without precipitation. The numerical integration techniques of the model are presented. The droplet size spectra versus time and the droplet molalities for each value of time are discussed

    Rain scavenging of solid rocket exhaust clouds

    Get PDF
    An explicit model for cloud microphysics was developed for application to the problem of co-condensation/vaporization of HCl and H2O in the presence of Al2O3 particulate nuclei. Validity of the explicit model relative to the implicit model, which has been customarily applied to atmospheric cloud studies, was demonstrated by parallel computations of H2O condensation upon (NH4)2 SO4 nuclei. A mesoscale predictive model designed to account for the impact of wet processes on atmospheric dynamics is also under development. Input data specifying the equilibrium state of HC1 and H2O vapors in contact with aqueous HC1 solutions were found to be limited, particularly in respect to temperature range

    Validation of Large Zoned RAID Systems

    No full text
    Building on our prior work we present an improved model for for large partial stripe following full stripe writes in RAID 5. This was necessary because we observed that our previous model tended to underestimate measured results. To date, we have only validated these models against RAID systems with at most four disks. Here we validate our improved model, and also our existing models for other read and write configurations, against measurements taken from an eight disk RAID array

    Assessment of possible environmental effects of space shuttle operations

    Get PDF
    The potential of shuttle operations to contribute to atmospheric pollution is investigated. Presented in this interim report are results of the study to date on rocket exhaust inventory, exhaust interactions, dispersion of the ground cloud, detection and measurement of hydrochloric acid and aluminum oxide, environmental effects of hydrochloric acid and aluminum oxide, stratospheric effects of shuttle effluents, and mesospheric and ionospheric effects of orbiter reentry. The results indicate space shuttle operation will not result in adverse environmental effects if appropriate launch constraints are met

    Computation of inflationary cosmological perturbations in chaotic inflationary scenarios using the phase-integral method

    Full text link
    The phase-integral approximation devised by Fr\"oman and Fr\"oman, is used for computing cosmological perturbations in the quadratic chaotic inflationary model. The phase-integral formulas for the scalar and tensor power spectra are explicitly obtained up to fifth order of the phase-integral approximation. We show that, the phase integral gives a very good approximation for the shape of the power spectra associated with scalar and tensor perturbations as well as the spectral indices. We find that the accuracy of the phase-integral approximation compares favorably with the numerical results and those obtained using the slow-roll and uniform approximation methods.Comment: 21 pages, RevTex, to appear in Phys. Rev

    Factorial cumulants reveal interactions in counting statistics

    Full text link
    Full counting statistics concerns the stochastic transport of electrons in mesoscopic structures. Recently it has been shown that the charge transport statistics for non-interacting electrons in a two-terminal system is always generalized binomial: it can be decomposed into independent single-particle events and the zeros of the generating function are real and negative. Here we investigate how the zeros of the generating function move into the complex plane due to interactions and demonstrate that the positions of the zeros can be detected using high-order factorial cumulants. As an illustrative example we consider electron transport through a Coulomb blockade quantum dot for which we show that the interactions on the quantum dot are clearly visible in the high-order factorial cumulants. Our findings are important for understanding the influence of interactions on counting statistics and the characterization in terms of zeros of the generating function provides us with a simple interpretation of recent experiments, where high-order statistics have been measured.Comment: 12 pages, 7 figures, Editors' Suggestion in Phys. Rev.

    Cosmological particle production and the precision of the WKB approximation

    Full text link
    Particle production by slow-changing gravitational fields is usually described using quantum field theory in curved spacetime. Calculations require a definition of the vacuum state, which can be given using the adiabatic (WKB) approximation. I investigate the best attainable precision of the resulting approximate definition of the particle number. The standard WKB ansatz yields a divergent asymptotic series in the adiabatic parameter. I derive a novel formula for the optimal number of terms in that series and demonstrate that the error of the optimally truncated WKB series is exponentially small. This precision is still insufficient to describe particle production from vacuum, which is typically also exponentially small. An adequately precise approximation can be found by improving the WKB ansatz through perturbation theory. I show quantitatively that the fundamentally unavoidable imprecision in the definition of particle number in a time-dependent background is equal to the particle production expected to occur during that epoch. The results are illustrated by analytic and numerical examples.Comment: 14 pages, RevTeX, 5 figures; minor changes, a clarification in Sec. II

    On the Aggregation of Inertial Particles in Random Flows

    Full text link
    We describe a criterion for particles suspended in a randomly moving fluid to aggregate. Aggregation occurs when the expectation value of a random variable is negative. This random variable evolves under a stochastic differential equation. We analyse this equation in detail in the limit where the correlation time of the velocity field of the fluid is very short, such that the stochastic differential equation is a Langevin equation.Comment: 16 pages, 2 figure

    Tuning the properties of complex transparent conducting oxides: role of crystal symmetry, chemical composition and carrier generation

    Get PDF
    The electronic properties of single- and multi-cation transparent conducting oxides (TCOs) are investigated using first-principles density functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen deficient In2_2O3_3, α\alpha- and β\beta-Ga2_2O3_3, rock salt and wurtzite ZnO, and layered InGaZnO4_4 reveals the role of the following factors which govern the transport and optical properties of these TCO materials: (i) the crystal symmetry of the oxides, including both the oxygen coordination and the long-range structural anisotropy; (ii) the electronic configuration of the cation(s), specifically, the type of orbital(s) -- ss, pp or dd -- which form the conduction band; and (iii) the strength of the hybridization between the cation's states and the p-states of the neighboring oxygen atoms. The results not only explain the experimentally observed trends in the electrical conductivity in the single-cation TCO, but also demonstrate that multicomponent oxides may offer a way to overcome the electron localization bottleneck which limits the charge transport in wide-bandgap main-group metal oxides. Further, the advantages of aliovalent substitutional doping -- an alternative route to generate carriers in a TCO host -- are outlined based on the electronic band structure calculations of Sn, Ga, Ti and Zr-doped InGaZnO4_4. We show that the transition metal dopants offer a possibility to improve conductivity without compromising the optical transmittance
    • …
    corecore