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I. Introduction

This is the final report of research conducted since

1976 under NASA Grant NSG-1243 under the general title "Rain

Scavenging of Solid Rocket Exhaust Clouds". The requirement

addressed by the work is that of assessing the environmental

impact of Solid Rocket Motor (SRM) exhaust products dis-

charged into the free air stream upon the launching of space

vehicles that depend upon SRM boosters to obtain large thrust.

These include the Titan series and especially the Sp,..ce Shuttle.

The exhaust product of greatest concern is HCl gas,

of which the Space Shuttle boosters generate and discharge

128,900 kg to the air below 10 km (troposphere). In addition

142,543 kg of H2O and 174,900 kg of Al 20 3 are emitted to the

troposphere from the SRM s in each Shuttle launch. The Al203

appears as particles suitable for heterogeneous nucleation of

HCl aq (hydrochloric acid) which under frequently occurring

atmospheric conditions may form a highly acidic rain capable

of damaging property and crops and of impacting upon the

health of human and animal populations.

The meteorological assessment of this problem has

numerous aspects. The present work has addressed two of these,

namely, (a) the cloud processes leading to the formation of acid

rain and the concentration of the acid that then reaches the

ground, and (b) the atmospheric situations that lead to the

production of cloud and rain at and near a launch site, and the

prediction of weather conditions that may permit or prohibit'

a launch operation.

1.
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In Section 11 of this report we present our analysis of

the heterogeneous condensation/evaporation of HCl and H2O under

conditions found in 'Titan III exhaust clouds ("ground cloud")

some 90 sec after launch at about l km altitude. This provides

basic information that should be used in a cloud/rain micro-

physical model to predir,it rainfall occurrence and acid

concentration.

Section TII presents a numerical mothod for use in,

generating weather predictions by means of our 3-n Niesoscale

Model (kisu, 1979) .

M 'Tho Co - Condensation /Evaporation of HU and 14-0

The free energy change, AF, of a system is a measure of

the tendency of that system to progress from one thermodynamic

gate to another. For the case of condensation/evaporation 6f i

different vapors on wettable particles, the general expression is

AF m 41rcr' (a - rpI ) -	 ylI kT In Si ')	 (1)

i

Cohere

aa' is the surface energy per unit area of the droplet
surface

a is th e radius of the droplet

*p is the radius of the nucleating particle

Ai is the nwnber of i-molecules condensed on the drop

k is Boltzmann's constant

T is the absolute temperature of the droplet surface

Si is the saturation ratio of vapor i with respect to a
flat surface of bulk solution at the same concentration
as the droplet
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The present purpose is to explore the application of

this basic thermodynamic statement to the case of the co-condensa-

tion/evaporation of 1-120 and HC1 vapors oil 	 particles

in the open air. For this case, let i = 1 specify HO and i = 2

HCl, and let the 1101 molefraction, x„ express the solution con-

centration. By definition, then, the molality, N = SS.S

X" / (I - X2) = S5.5 f(x,)

The drop radius is

n m
a(1 + f(x2)5) + rp ']^ / '	 (2)
(fin ^nQ 

whore

ml is the mass of a molecule of 1110

P 1 is the solution density

n0 is Avogadro' s member

R is M,/m and M is the molecular weight of i.

Empirical expressions are used for the solution surface

energy,

a' = 75.728 - 0.1535(T-273.16) - 10.S75f(xl)
	

(3)

and the solution density

p' = 1.0 — 0.72'158 fix.,)
	

(`i)

The saturation ratio for each vapor with respect to

a at surface of the solution is given by

Sx' = Pi/Pi sat NIM	
(5)

S.
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where

Pi is the environmental partial pressure of i

and

Pi 
sat (x,,T) is the equilibrium vapor pressure of i

over a flat surface of solution of concentration x 

and temperature T.

For T = 288° K, the values of S 1 ' and S 2 ' as functions of x 2 are shown

in Fig. 1. Note that S 2 ' > 1 only for x 2 < 8.85 x 10+2 , whereas S 1 ' > 1	 lE

only for x7 > 8.15 x 10 	 hence at 288° K, the vapors are both
t
x

supersaturated with respect to the bulk solution only in the

narrow HCl molefraction range of 8.15 x 10 -2 < x2 < 8.85 x 10-2.

By means of (2) , (3) , (4) and (5) , AF may now be expressed

in terms of the six variables P 1 , P 1 , T, A i) rp , and x,. For any

particular case, the environmental values of P 1 , P,, and T must be

specified, thus AF may be expressed for such a case in terms of rp,

ni and x..

The total number of molecules, n s , required to form a

monolayer of solution on a particle may be estimated as a function

of r  and x, as follows. If the particle and its coating of solution

is spherical, then n  is given by

r 2
it s = n l + na = 4 (1 + —E)	 (6a)

rs
r

also	 nl	 4(1 + . 2 )^/ (1 + f(x2))	 (6b)
r

S

where x is the mean molecular radius of a "molecule" of solution,

a
E

4.
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defined by

	

.	 1/3

where v 1 and v2 are respectively the molecular volumes of H 90 and

HC1 in solution. In general, the molecular volume of species i may

be written

vi = Mi /P r no

giving

	

vl = 2.9914 x 10 23
	 1
( p,)

andv2 = Sv.

Values of is iar the concentration range 1.8 x 10 -5 < x2   6. 4506 x 10-1

are given in Table 1.

Table 1. Values of r for HU	 in the concentration

range 10-`- s< M < 10 2aa t

x, N x1 108.	
!i

ACM

1.8 x 10 -5 10-a 0.999982 1.9256

1,8 x 10_
4

102 0.00082 1.9259

1.8 x 10 - 10'1 0.9982 1.92.69

1.77 x 10 - 10 0.9823 1.9373

1.5266 x 10-1 101 0,84734 2.0212

6.4306 x 10 -1 102 0.35694 2.2794

6
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A reasonable value for r  in the concentration range of

8 x 10-2 { Y2 < 9 x 10 - is 2 x 10
-8
 can. Using this value in

(6b), n 1 may be calculated, an;? AF may be determined as a

function of r  and x, for specified environmental conditions.

Taking environmental conditions as found in the stabilized

ground cloud generated by n.Titan III launch: T = 298.16°x,

P 1	23S82, dynes /cm P2 = 104.5 dynes/cm2 at time t = 90 sec.,

the map of AF in (;t
21

rp) coordinates (Fig. 2) is constructed.

The contours of the AF surface in rp , x2 coordinates show	 E

a definite "saddle point", t, which for the specified environ-

mental conditions, occurs at r p = 1.3 x 10 6 cm, X2 = 8.8 x 10-2.

This point is analogous to the critical point defined for single

vapor heterogeneous nucleation (see, e.g., Byers, 1365, Chap. 2).

The surface thus defined is equivalent to the free energy surface

AG (nA,nB) for the H2O - H2SO4 system that has been discussed by
L

Reiss (1950), Kiang and Stauffer (1973), Hamill (1975) and Hamill,

et al (1977). Reiss (1950) showed that, when the surface energy

term is included in the free energy expression, the free energy

surface AG (nA,nB) is saddle-shaped witch a saddle point defined by

do (AG) = 0 and 
8n 

(AG) = 0. The saddle shape was also found to
A	 B

be present under stratospheric conditions for the H2O H2SO4 system

by Hamill, et al (1977).

Several features of the AF (x2 rp) surface (Figure 2) merit

discussion. At constant x 2	8.8X10-2 , (M = 5,355), the AF values rise

gradually with increasing particle size in the range 10 -8 cm < r <_ p^

1.3 x 10-6 cm, reaching a maximum of 25 x 10-11 erg at the latter

4
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1

size (saddle point). AF then decreases to 0 at rp = 2.67 x 10 -6 cm
1

and decreases sharply to large negative values for larger sizes.
i

At higher and lower concentrations, e.g., x 2 > 13 x 10_
2
 and

x2 < 4 x 10 2 , the AF surface rises sharply as r p increases above

10_
6
 cm. Thus the growth region for HC1 aq, droplets lies between

nearly vertical "canyon" walls at x 2 ~ 5.8 x 10 -2 and x2 „ 11.7 x 10-2

for nuclei of size rp - 2 x 10 -6cm and larger. The bottom of the 	 j

"canyon" is relatively broad and flat with the locus of minima lying

near x2 = 8.8 x 10-2.

The profile of the AF (x 2 ,rp) surface taken at rp = 10-5cm

(Figure 3) shows the shape of the "canyon." In addition the

values of the respective components of AF are shown for r  = 10 5 c

as a matter of interest. This diagram necessarily is discontinuous

at AF = 0. The terms represented are:

AF 	 = 4IIa I	 (a2 - r 2) - constant
p

AF 	 =
	

k	 1" In SI'

AF  = n2 k T In S2'

OF'	 = AF I + AF2
it

AF	 = AF'	 + AF
l

r
^F
'f

AF2 is affected by two factors: 	 (a) as x2 increases, n2 also must

increase, and (b) as x 2 increases S O' must decrease causing In S2'

to go from positive to negative values as S 2 '	 decreases through 1.0.

The result of this is a minimum in AF 
	
near x2 = 4.5 x 10 -2 , and a

sign reversal near x2 = 8.8 x 10 -2 .	 No minimum is found for AF 

because both nI and S 	 as x2 increases.	 Inasmuch as

droplet growth cannot proceed unless both vapors are saturated, the

curves AF 	 and AF 	 indicate that the region for droplet growth is in

fact much narrower than the AF "canyon."	 This is true because, if

9
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either vapor is undersaturated, a droplet in that vapor must yield

the undersaturated species by evaporation becaase the mass diffusion

is proportional to P i (S i '-l). The approximate range for nucleation

to occur is 8.15 x 10
-2
 < x2 < 8.85 x 10' 2 . The minimum value of

AF occurs at x2 = 8.82 x 10-2 , thus this is the most probable HM

concentration for a particle size r  = 10-5 cm under the specified

tonditions.

It is clear that AF (x2 , rp) varies with T, P l and P 2 . For

the purposes of NASA, the maps of AF(x2 ,T ) for the various; environ-	 j

mental conditions that may be encountered at different launch sites
i;

and in all seasons should be computed. Particularly the changes 	 }

il

imposed upon the system by the increase of solid rocket booster

capacity required for the Space Shuttle should be more completely

evaluated.

11.
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Abstract
k

^i

An explicit, mixed numerical method has been developed for atmospheric

models. In a set of physical equations, the forward finite-difference

scheme is applied for the time tendency terms, upstream for the advection

terms, and central for other terms. For either the shallow-water equations

in one or two dimensions or the primitive equations in three dimensions,

the mixed method is conditionally stable and shows much better accuracy

than that of the pure forward-upstream method. It is also shown that the

traditional CFL condition is only a special case of the stability conditions

revealed in this study.

13,
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1. Introduction

Numerical simulation has become a more and more important method

to reveal atmosphere processes, because the traditional analytic

method has frequently failed to provide solutions from complex systems

of partial differential equations which describe atmospheric phen-

omena. Different numerical schemes are used to approximate such

systems from differential form to difference form. Due to the limitation

on computer resources, economy and accuracy of the numerical scheme

should be simultaneously considered.

The central finite-difference scheme has been widely applied in

atmospheric numerical models, and recently became so popular that one

tends only to emphasize its advantage in higher-order accuracy of

solution and de--emphasize its bad performance in actual calculations.

In fact, this scheme not only generates erroneous small-scale pertur-

bations which gradually distort the model results, but also provides

two separate solutions for odd and even tine-steps during the numerical

integration. To avoid those errors, artificial space and time smoothers

are necessary and have to be implemented into the computational algo-

rithm. Among other explicit schemes, a lower-order scheme without

any smoother may become an adequa^e alternative. After all, 'the

central-differencing scheme (a three-time-level scheme) requires more

programming efforts and greater computer resources than lower-order

ones + (i.e. two-time-level schemes).

The explicit two-time-level, schemes used in atmospheric models have

been described and summarized by Thompson (1), Mesinger and Arakawa (2)

and Haltiner'and Williams (3). For a single linear advection equation,

the forward-in-time and upstream-in-space scheme has been proved to

lit .
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be stable, whereas the forward-in-time and Contral-in_snace ^,s unstable.

If a more complicated system than a simple advection equation is approx-

imated by a mixed method, the stability of the approximate system cannot

be safely determined without careful analysis. The mixed method

considered here consists of the forward scheme for time tendency terms,

the upstream scheme for advective terms, and the central scheme For

other terms in the system.

The purpose of this paper is to demonstrate that the mixed method

is conditionally stable for both linearized systems of shallow.-water

equations and primitive equations.

2. Linear shallow-ivater sys tem

The shallow-water system is the simplest primitive equation system

for an incompressible, hydrostatic, adiabatic and frictionless fluid.

Kasahara (4)	 applied the central finite-difference scheme to a one-

dimensional system with two different staggered grid-nets, and analyzed

the numerical stabilities. From his study he indicated that stability

analysis should not be performed separately for every physical factor

in the system, but for the entire system instead. Same shallow-water

equations will be adopted here to illustrate the numerical stability

of the mixed method for those equations.

The one-dimensional shallow , water equations are

Bu	 9u	 8h

(I. a)

15,



(1, b)

0^ poovz c^u a^. N

ah+Uah+tau=0
7 Tx '9x-

Symbols are defined in the Appendix. Basic properties of the mixed

method may be revealed as follows.

a. Stability

Let uQ denote the finite-difference approximation to u(t,x)

u(nflt,Qflx) and define hn.in a similar manner. The difference equations

of (1) are

n+1	 n	 n	 n	 n - n
uQ - uQ + U uQ - uQ-i + g hZ+l hQ-1 = 0
	 (2.a)

flt	 4x	 2-Ax

and

n+1	 n	 n n	 n	 n
hQ - hQ + 

U- 
hQ - hR-1 + H uZ - uQ-L 0

at	 flx	 2flx	 (2.b)

if U > 0. Same set of finite difference equations is separately constructed

by Brown and Pandolfo S , and stability is analyzed in an uncoupled approach.

The solutions are assumed to have the following form

	

in`	
/ ^n\

	

uQ 
1	 u

	

T1 
^	 n exp `i (a Qfl

x)
	 (3)

	

hQ ^	 h

Substitute (3) into (2), and an amplification matrix is obtained

(Richtmyer and Morton, (6)).

16.
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G
r x

where	 = 1 - U Ax (1 - cos aAx), (5)

At= U dx sir. aAx, (6)

= g	 x sin aAx (7) 3;

i^

and ^x = H ox sin aAx. (8)

ii

The eigenvalues of the amplification matrix, G

tF

are	 a_	 -i o +'^)^ (9)

and	 X*	 i 0 -	 ). (10)

While a is the physical mode of the solution, X	 is the computational

mode.	 The squared absolute value of eigenvalue is

s

a

a

ti

17. 4
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1X12 1 BAt + AAt2

where	 A 2 ( 5,R) 2 _cos aAx) 
II - Sj

C gNI sing aAx (12)

+ 2--- Cg sing aAx,
(Ax)

2

U
B 2(t) (1-cos aAx),	 (13)

and	
C9 

=j—gH	 (14)

The von Neuman condition for stability (Richtmyer and Morton, (6))

requires that

J 	 < 1.	 (15)

Combining (11) and (15), a stability criterion is arrived,

^%t-
:SA

B	 (16)

This concludes that the mixed numerical method is conditionally stable

for a linearized one-dimensional shallow-water system.

18.
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Theoretically, the stability bound ^.ni be reached asymptotically,

U AX
(U + Cg)2

as the wave number of a single Fourier caaponent approaches to zero.

Obviously, in term of velocity U, there is a maximum of the asymptotic

stability bound for different depth of fluid. Figure 1 shows the

variations of At,, for different depths of fluid and horizontal incre-

ments under certain wind regime. If there is no surface gravity wave

(H = 0), the CFL (Courant-Friedrichs --Lewy) condition is met, and At,,.

decreases monotonically as U increases (Fig. la). For slow-moving

waves, At,, increases with increasing velocity, then decreases after it

passes its maximum (Fig. lb and c). Finally, At, will reach zero as

U approaches to infinite. For fast-moving graves, the maximum of U

is beyond 20 m/sec, and At,, decreases with decreasing velocity mono-

tonically to zero (Fig. ld and le).

The CFL Condition (Fig. la) is only a special case in the present

results which give opposite conditions (e.g. Fig. ld and le) to the CFL

conditions in certain situations (H = 100m and 1000m, respectively).

It is also observed that for the shallower fluid At;, is dominated by the

fluid velocity, and frir the deeper fluid At,, primarily depends on the

speed of surface gravity wave.

The maxima for At,, and U can easily be det€nmined, and they are

Umax = C
9 9	 (18).

and	 At	
-

1 Qx	
(19)max 4 Cg .

Hence, it is concluded that At 
maxis 

inversely proportional to the

(17)

19.
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speed of surface gravity waves. In other words, the deeper the fluid,

the shorter the time-ttep.

There are two special cases and they may be described as follows,

Case 1: If Cg = 0 4 (11) becomes

JX1 2 =1--2 ( > (l -CosaAx) At

(2Q)
+ 2 (&) 2 (1 - COs aAx) At2.

Thus	 At :$, Ax
	

(21)J

is the conditional stability criterion for the pure forward-upstream

method applied to the simple advection equation. For simplicity this

method is called pure method, which was heavily cxiti-iz-- by ::oeln!^w.mp

(7) becamse of its highly dissipative character.

Case ^: If 9 = 0, (11) becomes

X12 = 1 +(C Atax sin aAx) 2 .	 (22)

2 is always greater than unity, and this method is absolutely unstable.

Hence, U is not allowed to vanish.

b. Damping factor

The absolute value of the eigenvalue for the physical mode is a good

indicator to compare how much the original weave amplitudes are reduced

by the truncation errors due to different finite-difference methods. For

the mixed method, I X 1 2 is described in (11),. For the pure method, the

third terms in both (2a) and (2b) are approxir3ated by the upstream-in°

.

20.
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space scheme rather than by the central-in-space one, then we have

^ X 1 2 _ 1 _ 2 (1 -(U g) ^ (U g) (a) (1-COS ate) y	 (23)

following the same mathematical procedure to obtain (11). The stability

criterion is immediately provided,

AX	

(24)
U  + Cg

To show the comparison of the damping factors between these methods,'

'\' 2 is plotted against At for nine waves, In general, the time step

for a stable calculation is more restrictive for the mixed method (Fig. 2)

than that for the pure method (Fig. 3). However, IX12 gives remarkably

less damping for the mixed method than that for the pure method. For

example, the least Ix 1 2 for 5A wave is greater than 99.5 5% for the mixed

method, and is abotit 75% for the pure method. The high accuracy of the

miffed method is obvious. Another interesting point is that the time step

decreases with increasing wavelength for the miffed method, while it is a

constant for %he pure method. The indication is that an accurate repre-

sentation of wave requires short time stnp and the truncation errors due

to foreward-in-time difference scheme is greatly reduced. Over all, it

is concluded that the mixed method is • more accurate even though relatively

small time increments are necessary. Also, the mixed method demands the

same programing efforts and canput;er resources as the pure method does,

but much less than the leap-frog method.

c. phase speed

The false computational dispersion associated with a finite-difference

p

'? 1.
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method usually distorts the true solution of the problem. The acceleration

and retardation of the approximate solution from a set of finite-difference

equations can be described by the phase speed of the physical mode. The 	
t
1

true phase speed of the one-dimensional shallow-water system is (U + Cg)
I

After thorough analysis, the phase speeds of different approximations in

sin a0x
space for this system are the same, i.e., (U +C9 	 aAx among

the mixed, pure, and leap-frog methods. Apparently, the true solution is

generally retarded by any one of the approximations. In other words,

the computational dispersion of the mixed method is as good as the leap-

frog or pure method.

d. Two-dimension.! case

For a two-dinensional shallow-water system, the Coriolis effect may'

be incorporated. The system consists of the following equations,

au+U x+^ 
ay +g ax- fv = 0,	 (25.a)

av + U y + V av + g ah + fu = 0	 (25.b)at ax	 By	 97

eh +U ax +V ay +H (aX + y > = 0	 (25.c)

The mixed method is applied to this system except u and v in the Coriolis

terms are approximated byun and vn"m
 respectively. The two-dimensional

stability criterion for the difference system is

^`.	 At _< B(26)

22.
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where

A = 2(W) 2 (1-cos aAx) + 2( y) 2 (1-cos 0Ay)

+ 2 U Y 1-cos aAx - cos SAy + cos(aAx - $Ay)

(27)

t (f2 + Cgd2)

+ 2( U—, sin aAx + Y sin OAY) (f2 + C2 62)k,

B = 2 
U (1-cos aAx) + V (1-cos QAy) , 	 (28)

Y

and	 d2 sin2 aAx + sin2 SAy

.Ax2 	AY-

if the solutions have the form

n	 ..nuQ, m	 u

vn	 v	 exp Ci (aQAx + fmAy), 	 (30)fC,m

hn 	 hn
Q,m

It is clear that the Coriolis effect is dominated by the surface

!	 gravity waves, if the fluid is deep enough. The basic properties of
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this two-dimensional approximation is quite similar to the previous

one-dimensional one.

3. Linear primitive-equation: A three-dimensional system

To model atmospheric phenomena in mesoscale, a more complete set

of coupled primitive equations than a shallow water system is clearly

needed. Careful analysis of numerical stability for the approximate

system is necessary to ensure stable calculations. The linear primi-

tive equations which will be used here are the simplifications of a

three-dimensional mesoscale model equations (Hsu, (8)). They are

2

a^+U.,_ +V	 = ,	 (3 iau	 ox	 ay eo ax - ` - K az o	 l. a

2av
at + U ax 

+ v ay + eo ay + fu - K az^ = C '	(3l.b)

0

au
ax + ay + az — 0 I	 (33.d)

ae	 2

at+uaX+vay +ws-K==O	 (31.e)
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a.	 Stability

"Let 
ez,m,k 

denote the finite-difference approximation to

A(t,x,y,z) = A(nAt,AAx, My, I(Az) for the dependent variables u, v, w,

n, and 6.	 The finite-difference equations of the mixed method are

un+1 - un	 uQUZ-1 * um 	 m l + 60 it 91+1	 1991-1+ U

At	 Ax Ly	 2A%

uk+l -
2uk + 

uk-1

(32,a)

- fvn - K = 01

Az

n+1	 nv	 v	 +	 v^ -- vZ-1 + V v .	 in-1 + 8 ° ^m+l - ^mrl

At	 Ax 0y	 2Ay

+ fun - K vk+l _
2vk + vk_l	

- 0

(32.b)

Az

00 IAIIk+l  - 7T
k _	

6k+1 + ®k
	

02 (32.c)
°LZ	 2

uQ+l	 uZ-1 t m+1 - ytt-1 + Wk+l - 'k-1 = 0
' (32.d)

2Ax	 2Ay 2dz

n+1	 n

and	
6	

- 6
	 + 

U 6
Q - 6L-1 +

V 6m - em-1 - Sw
At	 Ax Ay

81c+1
 - 2®k + Ak_l

(32.e)

_ K = 0,
Az

when we assume that L > 0, and 7 > 0.

25.



Wave solutions of (32) take the form

Ani'mik= A exp(i(aZAx+BmAy+ykAz)}. (33)

After substituting (33) into (32) and performing some algebraic manipu-

lations, an amplification matrix can be obtained,

G = ^-4 fat	 -fix

-fAt	 ^-4	 - y (34)

4x sy	 ^-4

where  At At
= 1 - U — (1 - cos aAx) - V — (1 - cos SAy)

Ax Ay

KAt
+ 2 7-2,
	
(1 - cos yAz), (35)

Az
At At

_ U -- sin aAx + V — sin SAy,' (36)
Ax Ay

g At	 Az sin aAx
^x = (37)

8 o	 sin ^yAz Ax	 ,

g At	 Az sin SAy
^y =	 -------- (38)

8o	 sin yAz Ay	 ,

Az sin aAx

sin yAz Ax	 ,

Az sin SAy
and	 4y = S At (40)

sin yAz Ay

26.
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The physical eigenvalue of the amplification matrix is

a =	 - i4 + (^X^x + ^y^y + f2At2) }. (41)

The squared absolute value of a is

z
= 1 - S^At + AAt2 , (42)

TI

where	
A - 2(-&) (1( 1 _cos aAx) + 2(^)'(1 -cos SAy)

^[

+ 2	
Y 

{1 - cos aAx - cos OAy + cos (aAx-PAy))
u

+ 2(U sin aAx + y sin 06y)(N262 + f2)^

+ (N2 
a
2 + f2)

+ 4{1 - &l - cos aAx) - y(1 - cos RAy))

{ -	 (1 - cos YAW rz
Az

2

+ 4	 4 (1 - cos YAZ) 2
Az

(43)

ii
;j

1,

$ = 2 a1x (1 - cos aAx) + 2 ^ (1 - cos SAy), (44)

27.



OF POCIR

s2 =	 Az2	 (sin2 aAx sin2 RA )	
(45)

- Cos 77 -	 2

and	 N2 	 S _ doo	 (46)0 four.

Then the stability criterion is given in the von Neumann's sense,

At < BX. (47)

For this three-dimensional primitive -equation system, the mixed

method is conditionally stable.

z
Since U = V = 0, (aJ > 1. This method becomes absolutely unstable,

so U or V is not allowed to vanish.

b. Averaging in the hydrostatic equation

The averaging procedure appears in (32.c), and is crucial to the

stability of the approximate system. If 0 in (31.c) has not been

averaged, we may instead have

60 
1T1c+1 - Ilk-1 - g on = 0.	 (48)

2Az	 Sp

The only affected term in (42) is (45) and becomes

d	

sin Y^,z

2 = Az2	 ( sin2 aAx + sin2 $A- )	
(49)

2	 —	 oy`

2
For 2Az wave, 6 2 is unbounded, and JaJ is much greater than 1. Hence

28.
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the unstable situation occurs due to the inproper approximation of the

hydrostatic equation.

c. Influences of physical factors

Generally, the relationship between U (or V) and At in the primi-

tive-equation systems still remains quite similar to that in the

shallocrwater system, because the same numerical technit-le is employed.

However, two systems describe different physical waves, i.e. surface

gravity waves for the shallow-water system and internal gravity waves

for the primitive-equation system.

In the present primitive-equation system, three physical factors

govern the stability bound and they are

(l) the Coriolis effect (K = N = 0)

(2) The thermal stratification ( = K = 0), and

(3) The vertical diffusion (N = = 0).

When any one of these three factors is retained in the system At will have

a maximum with respect to U (or V). They are illustrated in figures

(4a), (4b), and (40 for the case (1) -	 400, case (2) - N = 0.01

sec-1 , and case (3) - K = 10 3 cm2 sec 1 , respectively.

At decreases from its maximum to zero as U (or V) either increases

to infinite or decreases to zero. These results are different from the

case which none of the physical factors appears in the system ( = K = N = 0).

In figure (4d), At is inversely proportional to U (or V), and At is

unbounded as U (or V) goes to zero (i.e. the CFL condition).

Usually, At increases as Lix (Ay) increases. It can be found in

figures (4b) and (4d). Both in figure (4a) and (4c), At increases as

Qx (or Ay) decreases under weak U (or V) conditions. It implied that

under some situations, the shorter the horizont;ll increment, the larger
Y
{
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the time increment. This is quite unusual. In applications,' At

should be determined by exact calculation of (47).

d.. Vertical dependence

The vertical dependence of the stability bound appears in the

thermal stratification and vertical diffusion terms in (43). The

limiting condition of that both the vertical increment and the vertical

wavelength approach to zero provides the same result as eliminating the

thermal stratification IN = 0) and the vertical diffusion ( K = 0)

effects (Fig. 4a).

If only the vertical diffusion effect is omitted in (43), the max-

imum time step decreases as the vertical increment and the vertical

wavelength increase (V.g. 5a). This means that the shorter the vertical

increment, the larger the time step. High accuracy in vertical with a

long time step is obviously allowable. The situation becomes completely

opposite when only the thermal stratification effect is not considered

(Fig. 5b). While both effects are retained in the primitive equation

system (Fig. 5c), it seems that the stability bound of a pure thermal

stratification case (Fig. 5a) is modified by the vertical diffusion

effect. Furthermore, for longer graves the modification of time increment

by the vertical diffusion is weaker than that for the shorter waves.

The reduction of time step is quite significant for short wavelength

and short vertical increment.

e. Accuracy

In general, the accuracy of the mixed method applied to the three-

dimensional primitive-equation system is quite good. Figure 6 shows

the plot of IX1 2 vs. At at N = 0.01 sec-1 , K = 103 cm  sec 1,	 = 400,
U = V = 10 m sec-1 , 10 Ax, 10 Ay and Ax = Ay = 30 lam. The lowest value

ofis 97.63,m (i.e. 
I a]	 = 98.81%;) for the 6Az waves. This very

30.
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weak damping may be very helpful to suppress the instability caused by

non-linear integration.

4. Conclusion

A mixed numerical method has been developed for atmospheric models,

and consists of the forward difference scheme for time tendency terms, 	
u 

j;

the upstream scheme for advection terms, and the central scheme for

other terns in a physical system. For simple advection equation, the

forward-upstream method is excessively dissipative, while the forward-

central one is absolutely unstable. The mixed method is a combination

of these two methods. Most importantly, this method is conditionally

stable and highly accurate to the approximate system of either the

shallar-water equations in one or two dimensions or the primitive equa-

tions in three dimensions. The dependences of determining the stability

bounds are not quite obvious. However, the analytic expressions of the

linear stability criteria are given. At should be easily found under

typical conditions. The traditional CFL criterion is only a special

case of the present results, which give opposite criterion to the CFL

criterion in certain situations,

The mixed-aaethod not only conserves computer resources but also

programming efforts, because it is explicit and two-tit'r:e-level. This

method has been successfully applied by the author in his mesoscale

model (Hsu, (8).	 Stable calculations have been achieved without anv

artificial spatial smoother or temporal filter.

To compare the accuracy of the model results among the mixed method

and other explicit ones for a non-linear atmospheric model, it is nec-
t

essary to simulate some real cases with different methods and analyze

the differences between observational and computational data. This

31.



effort is being undertaken. Implicit or semi-implicit method (e.g.

Sun, (9) may be helpful to increase the length of the allowable time

step for long-term integration.
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Appendix	 List of Symbols

Cgg3" , speed of surface gravity wave

f	 Nsin,^, Coriolis parameter

g	 gravitational acceleration

G	 amplification matrix

h	 height perturbation of a free surface

H	 constant height of a free surface

i	 ►rL
K	 vertical eddy exchange coefficient

Q, m, k	 number of increments in x-, y-, and z- directions, respectively

N	 ( g
	

° ) Brunt-Vgisala frequency

e 
	 dZ

ae
S	 = constant potential, temperature lapse rate

r

t	 time

U, v, w	 x-, y-, and z- components of velocity perturbation, respectively

U, V	 constant velocities in x- and y- directions, respectively

Umax	 value of U corresponding to Atmax

X ) y, z	 Cartesian coordinate

a, S, y	 wavenumbers in x-, y-, and z- directions, respectively .

At	 time increment

At,,r 	limiting At as the wave number approaching to zero

Ate	maximum of nt,Y

33.
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Ax, 0y, Az space increments in x-, y-, and z- directions, respectively

®	 potential temperature perturbation

6o	constant potential temperature

X	 eigenvalue of the amplification matrix

it	 scaled pressure perturbation

latitude

Earth rotation rate

!
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FIGURE LEGENDS

Figure 1: Variations of At; , with respect to U for (a) H = 0, (b) H = 1 m,

(c) H = 10 in, (d) H = 100 m, and (e) H 1000 m. Curve lables

are Ax in 10 Ian.
2

Figure 2: Damping factor Ja( of the mixed method for (a) 2Ax - 4Ax waves

and (b) 4Ax - 1OAx waves (Ax = 30 km, U = 10 m-sec-1 , and H

1000 m).	 2
Figure 3: Damping factor IX  of the pure method for 2Ax - 1OAx waves

( x = 30 km, U = 10 m-sec-1 , and H = 1000 m).

Figure 4: Variations of At with respect to either U or V for (a) K = 0,

N - 0, 01= 40 0 , (b) K = 0, N = 0.01 sec- 1 , 0 = 0, (c) K = 103
cm -sec , N = 0, 0 = 0, and (d) K = 0, N = 0, 0 =0 for 1OAx-

1CiAy-5Az wave (Az = 1 km). Curve lables are Ax=Ay in km.

Figure 5: Variations of At with different vertical (Az) waves for (a)

K = 0, N = 0.01 sec-1 , (b) K = 103 cm2-sec 1 , N = 0, and (c)

K = 103 cm2-sec 
1, 

N = 0.01 sec 
1. Horizontal constants are

IOAx=10Ay waves with Ax--Ay= 30 km, (b= 40 0 , and U=V= 10 m-sec 1.

Curve lables are Az in Im.
2

Figure 6: Damping factor IXI. of the mixed method in the three-dimensional

mesoscale model for different vertical, (Az) waves. Consta;its

are 10Ax=10Ay waves with Ax=Ay = 30 Ian, U = V = 10 cm-sec-1,

(D m 40 0 , K = 103 cm2-sec 1 , and N = 0.01 sec-1.
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