441 research outputs found

    Ordering of apolar and polar solutes in nematic solvents

    Get PDF
    The quadrupolar splittings of deuteriated para- and ortho-dichlorobenzene (1,4-DCB and 1,2-DCB, respectively) are measured by nuclear magnetic resonance(NMR) in the nematic solvents hexyl- and pentyloxy-substituted diphenyl diacetylene (DPDA-C6 and DPDA-OC5, respectively). Measurements are taken for all four combinations of the nominally apolar (1,4-DCB) and polar (1,2-DCB) solutes in the apolar (DPDA-C6) and polar (DPDA-OC5) solvents, and throughout the entire nematic temperature range of the solutions. The temperature dependence of the second-rank orientational order parameters of the solutes are obtained from these measurements and the respective order parameters of the mesogenic cores of solvent molecules are obtained independently from carbon-13 NMR measurements. The order parameter profiles of the two solutes are found to be very different but show little variation from one solvent to the other. The results are analyzed and interpreted in terms of the underlying molecular interactions using atomistic solvent–solute potentials. The influence of electrostaticinteractions on solute ordering is directly evaluated by computing the order parameters with and without the electrostatic component of the atomistic potential. It is observed to be small. It is also found that the important interactions in these solvent–solute systems are operative over short intermolecular distances for which the representation of the partial charge distributions in terms of overall molecular dipole and quadrupole moments is not valid

    Probing a non-biaxial behavior of infinitely thin hard platelets

    Full text link
    We give a criterion to test a non-biaxial behavior of infinitely thin hard platelets of D2hD_{2h} symmetry based upon the components of three order parameter tensors. We investigated the nematic behavior of monodisperse infinitely thin rectangular hard platelet systems by using the criterion. Starting with a square platelet system, and we compared it with rectangular platelet systems of various aspect ratios. For each system, we performed equilibration runs by using isobaric Monte Carlo simulations. Each system did not show a biaxial nematic behavior but a uniaxial nematic one, despite of the shape anisotropy of those platelets. The relationship between effective diameters by simulations and theoretical effective diameters of the above systems was also determined.Comment: Submitted to JPS

    Wholly Aromatic Ether-Imides as n-Type Semiconductors

    Get PDF
    Some wholly aromatic ether-imides consisting of rod-shaped, relatively-low-mass molecules that can form liquid crystals have been investigated for potential utility as electron-donor-type (ntype) organic semiconductors. It is envisioned that after further research to improve understanding of their physical and chemical properties, compounds of this type would be used to make thin film semiconductor devices (e.g., photovoltaic cells and field-effect transistors) on flexible electronic-circuit substrates. This investigation was inspired by several prior developments: Poly(ether-imides) [PEIs] are a class of engineering plastics that have been used extensively in the form of films in a variety of electronic applications, including insulating layers, circuit boards, and low-permittivity coatings. Wholly aromatic PEIs containing naphthalene and perylene moieties have been shown to be useful as electrochromic polymers. More recently, low-molecular-weight imides comprising naphthalene-based molecules with terminal fluorinated tails were shown to be useful as n-type organic semiconductors in such devices as field-effect transistors and Schottky diodes. Poly(etherimide)s as structural resins have been extensively investigated at NASA Langley Research Center for over 30 years. More recently, the need for multi-functional materials has become increasingly important. This n-type semiconductor illustrates the scope of current work towards new families of PEIs that not only can be used as structural resins for carbon-fiber reinforced composites, but also can function as sensors. Such a multi-functional material would permit so-called in-situ health monitoring of composite structures during service. The work presented here demonstrates that parts of the PEI backbone can be used as an n-type semiconductor with such materials being sensitive to damage, temperature, stress, and pressure. In the near future, multi-functional or "smart" composite structures are envisioned to be able to communicate such important parameters to the flight crew and provide vital information with respect to the operational status of their aircraft

    Artificial intelligence-based recurrence prediction outperforms classical histopathological methods in pulmonary adenocarcinoma biopsies

    Get PDF
    Introduction: Between 10 and 50% of early-stage lung adenocarcinoma patients experience local or distant recurrence. Histological parameters such as a solid or micropapillary growth pattern are well-described risk factors for recurrence. However, not every patient presenting with such a pattern will develop recurrence. Designing a model which can more accurately predict recurrence on small biopsy samples can aid the stratification of patients for surgery, (neo-)adjuvant therapy, and follow-up. Material and Methods: In this study, a statistical model on biopsies fed with histological data from early and advanced-stage lung adenocarcinomas was developed to predict recurrence after surgical resection. Additionally, a convolutional neural network (CNN)-based artificial intelligence (AI) classification model, named AI-based Lung Adenocarcinoma Recurrence Predictor (AILARP), was trained to predict recurrence, with an ImageNet pre-trained EfficientNet that was fine-tuned on lung adenocarcinoma biopsies using transfer learning. Both models were validated using the same biopsy dataset to ensure that an accurate comparison was demonstrated. Results: The statistical model had an accuracy of 0.49 for all patients when using histology data only. The AI classification model yielded a test accuracy of 0.70 and 0.82 and an area under the curve (AUC) of 0.74 and 0.87 on patch-wise and patient-wise hematoxylin and eosin (H&amp;E) stained whole slide images (WSIs), respectively. Conclusion: AI classification outperformed the traditional clinical approach for recurrence prediction on biopsies by a fair margin. The AI classifier may stratify patients according to their recurrence risk, based only on small biopsies. This model warrants validation in a larger lung biopsy cohort.</p

    Normative data for the lower extremity functional scale (LEFS)

    Get PDF
    Background and purpose — The lower extremity functional scale (LEFS) is a well-known and validated instrument for measurement of lower extremity function. The LEFS was developed in a group of patients with various musculoskeletal disorders, and no reference data for the healthy population are available. Here we provide normative data for the LEFS. Methods — Healthy visitors and staff at 4 hospitals were requested to participate. A minimum of 250 volunteers had to be included at each hospital. Participants were excluded if they had undergone lower extremity surgery within 1 year of filling out the questionnaire, or were scheduled for lower extremity surgery. Normative values for the LEFS for the population as a whole were calculated. Furthermore, the influence of sex, age, type of employment, socioeconomic status, and history o

    Bandgaps in the propagation and scattering of surface water waves over cylindrical steps

    Full text link
    Here we investigate the propagation and scattering of surface water waves by arrays of bottom-mounted cylindrical steps. Both periodic and random arrangements of the steps are considered. The wave transmission through the arrays is computed using the multiple scattering method based upon a recently derived formulation. For the periodic case, the results are compared to the band structure calculation. We demonstrate that complete band gaps can be obtained in such a system. Furthermore, we show that the randomization of the location of the steps can significantly reduce the transmission of water waves. Comparison with other systems is also discussed.Comment: 4 pages, 3 figure

    К 125-летию Иовеля Григорьевича Кутателадзе (1887–1963)

    Get PDF
    Статья посвящена жизни и деятельности И. Г. Кутателадзе — основателя высшего фармацевтического образования и научной фармации в Грузии, выдающегося фармакохимика, основателя и директора Тбилисского научно-исследовательского института фармакохимии, который с 1964 г. носит его имя, председателя научного общества фармацевтов Грузии и академика АН Грузинской ССР. Впервые подробно исследуется одесский период его деятельности.The article is devoted to life and activity of I. G. Kutateladze, founder of higher pharmaceutical education and scientific pharmacy in Georgia, prominent pharmacochemist, founder and director of the Tbilisi Research Institute of Pharmacochemistry, which has had his name since 1964, chairman of scientific society of pharmacists of Georgia and academician of AS of Georgian SSR. The Odessa period of his activity has been studied in details for the first time

    Results of screening in early and advanced thoracic malignancies in the EORTC pan-European SPECTAlung platform.

    Get PDF
    Access to a comprehensive molecular alteration screening is patchy in Europe and quality of the molecular analysis varies. SPECTAlung was created in 2015 as a pan-European screening platform for patients with thoracic malignancies. Here we report the results of almost 4 years of prospective molecular screening of patients with thoracic malignancies, in terms of quality of the program and molecular alterations identified. Patients with thoracic malignancies at any stage of disease were recruited in SPECTAlung, from June 2015 to May 2019, in 7 different countries. Molecular tumour boards were organised monthly to discuss patients' molecular and clinical profile and possible biomarker-driven treatments, including clinical trial options. FFPE material was collected and analysed for 576 patients with diagnosis of pleural, lung, or thymic malignancies. Ultimately, 539 patients were eligible (93.6%) and 528 patients were assessable (91.7%). The turn-around time for report generation and molecular tumour board was 214 days (median). Targetable molecular alterations were observed in almost 20% of cases, but treatment adaptation was low (3% of patients). SPECTAlung showed the feasibility of a pan-European screening platform. One fifth of the patients had a targetable molecular alteration. Some operational issues were discovered and adapted to improve efficiency

    New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones

    Get PDF
    State‐of‐the‐art perovskite‐based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro‐OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT‐Amide‐TPA) is reported in which a functional amide‐based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of &lt;$5 g−1. When employed in perovskite solar cells, EDOT‐Amide‐TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiro‐OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOT‐Amide‐TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Li‐additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amide‐based HTM can outperform state‐of‐the‐art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, low‐cost HTMs

    New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones

    Get PDF
    State‐of‐the‐art perovskite‐based solar cells employ expensive, organic hole transporting materials (HTMs) such as Spiro‐OMeTAD that, in turn, limits the commercialization of this promising technology. Herein an HTM (EDOT‐Amide‐TPA) is reported in which a functional amide‐based backbone is introduced, which allows this material to be synthesized in a simple condensation reaction with an estimated cost of &lt;$5 g−1. When employed in perovskite solar cells, EDOT‐Amide‐TPA demonstrates stabilized power conversion efficiencies up to 20.0% and reproducibly outperforms Spiro‐OMeTAD in direct comparisons. Time resolved microwave conductivity measurements indicate that the observed improvement originates from a faster hole injection rate from the perovskite to EDOT‐Amide‐TPA. Additionally, the devices exhibit an improved lifetime, which is assigned to the coordination of the amide bond to the Li‐additive, offering a novel strategy to hamper the migration of additives. It is shown that, despite the lack of a conjugated backbone, the amide‐based HTM can outperform state‐of‐the‐art HTMs at a fraction of the cost, thereby providing a novel set of design strategies to develop new, low‐cost HTMs
    corecore