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A B S T R A C T   

Introduction: Between 10 and 50% of early-stage lung adenocarcinoma patients experience local or distant 
recurrence. Histological parameters such as a solid or micropapillary growth pattern are well-described risk 
factors for recurrence. However, not every patient presenting with such a pattern will develop recurrence. 
Designing a model which can more accurately predict recurrence on small biopsy samples can aid the stratifi-
cation of patients for surgery, (neo-)adjuvant therapy, and follow-up. 
Material and Methods: In this study, a statistical model on biopsies fed with histological data from early and 
advanced-stage lung adenocarcinomas was developed to predict recurrence after surgical resection. Additionally, 
a convolutional neural network (CNN)-based artificial intelligence (AI) classification model, named AI-based 
Lung Adenocarcinoma Recurrence Predictor (AILARP), was trained to predict recurrence, with an ImageNet 
pre-trained EfficientNet that was fine-tuned on lung adenocarcinoma biopsies using transfer learning. Both 
models were validated using the same biopsy dataset to ensure that an accurate comparison was demonstrated. 
Results: The statistical model had an accuracy of 0.49 for all patients when using histology data only. The AI 
classification model yielded a test accuracy of 0.70 and 0.82 and an area under the curve (AUC) of 0.74 and 0.87 
on patch-wise and patient-wise hematoxylin and eosin (H&E) stained whole slide images (WSIs), respectively. 
Conclusion: AI classification outperformed the traditional clinical approach for recurrence prediction on biopsies 
by a fair margin. The AI classifier may stratify patients according to their recurrence risk, based only on small 
biopsies. This model warrants validation in a larger lung biopsy cohort.   

1. Introduction 

Lung adenocarcinoma (LUAD) accounts for more than 50 % of all 
lung cancer subtypes and is nowadays more often diagnosed at an early 
stage due to advances in screening methods [1,2]. Despite curative- 
intent therapy by either surgery or stereotactic ablative radiotherapy 
(SABR), 10–50 % of these patients experience recurrence during follow- 
up [3–7]. 

In 2011, the International Association for the Study of Lung Cancer 
(IASLC), the American Thoracic Society (ATS) and the European Res-
piratory Society (ERS) developed a novel histological classification of 
LUADs. This classification consists of five different growth patterns 

defined as lepidic, acinar, papillary, micropapillary and solid [8]. Based 
on these patterns, LUAD can further be separated into low-grade (lepidic 
dominant), intermediate-grade (acinar and papillary predominant) and 
high-grade (solid and micropapillary predominant) classes [9]. The 
distinction of these five different histological subtypes is important since 
they correlate with patient survival. This has been demonstrated and 
validated in numerous studies [10–13]. In addition, several studies were 
able to link LUAD-specific recurrence to the presence of high-grade 
patterns for both stereotactic ablative radiotherapy (SABR) [7] and 
surgery [5,14]. Even when present in small proportions, the high-grade 
pattern can influence prognosis [15]. Furthermore, early-stage LUAD 
with a high-grade pattern can present different time-dependent and 
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side-specific recurrence patterns [6,16]. Beyond histological and clinical 
criteria, recurrence prediction has also been evaluated using genetic 
data, albeit with contradictory results [17–20]. 

Most guidelines recommend postoperative surveillance of patients 
with non-small cell lung cancer (NSCLC) regardless of the clinical stage 
[21–23]. These recommendations incorporate medical history, physical 
examination and routine radiologic examinations at various time in-
tervals. Histological characteristics such as the presence of high-grade 
growth patterns and time-dependent and site-specific observations of 
recurrences in early-stage LUAD could stratify patients for individual-
ized follow-up and treatment, such as (neo-)adjuvant systemic therapy 
[24,25], to prevent an early recurrence. 

Whilst most studies used the Cox proportional hazards (PH) model to 
predict the clinical outcome, this linear model has some limitations 
compared to nonlinear analyses which might better reflect real-world 
clinical data. To overcome this problem, numerous studies have tested 
deep learning models to predict recurrence, recurrence-free survival 
(RFS) and overall survival (OS) in NSCLC, using clinical, radiological 
and pathological variables as input for both patients treated with radi-
ation therapy [26] and by surgery [27,28]. However, no stratification 
between the different tumor types was done, and only Lee et al. per-
formed subgroup analysis on stage IA and IB NSCLC [27]. Jones et al. 
developed a genomic-pathological risk model for early stage LUAD pa-
tients in which they demonstrated that the combination of molecular 
and clinicopathologic features improved risk stratification and predic-
tion of recurrence compared to traditional Tumor Node Metastasis 
(TNM) classifications [29]. However, it remained unclear whether bi-
opsy or resection specimens were incorporated into the model. 
Furthermore, all the above-named clinical-pathological studies, except 
the one by Leeman et al., were performed on resected early-stage 
LUADs. 

Most studies using a histology-based deep learning approach focused 
on WSI-level cancer type classification in resection specimens [30–35]. 
The publication by Shim et al. represents the only known study in which 
a DeepRePath model was developed and trained based on a deep con-
volutional neural network (CNN) using multi-scale pathology images to 
predict the prognosis of patients with early-stage LUAD [36]. To the best 
of our knowledge no LUAD recurrence prediction studies have been 
published that incorporate image-based features and deep learning to 
predict recurrence on preoperative biopsy specimens. This is of interest 
since risk stratification might influence not only the follow-up but also 
the choice of therapy. Thus, high-risk patients may benefit from a 
combination of a more radical surgical approach with extended lymph 
node dissection together with a closer follow-up to prevent and detect 
early recurrences, compared to low-risk patients. Furthermore, recur-
rence prediction on biopsy specimens is indispensable in cases of SABR 
or pre-operative neoadjuvant therapy in which a fully assessable 
resection specimen is not available. 

This study introduces AI-based Lung Adenocarcinoma Recurrence 
Predictor (AILARP), an AI-powered classifier based on CNNs, designed 
to predict recurrence in Lung Adenocarcinoma (LUAD) within a 5-year 
timeframe using H&E WSIs from biopsies. AILARP leverages data 
extracted from image patches sourced from tumor regions in LUAD bi-
opsy samples, focusing on color, spatial, and texture features. The pri-
mary goal of AILARP is to predict recurrence using pre-operative biopsy 
samples, providing crucial information for treatment decisions and 
follow-up planning. We also conducted a comparative analysis, con-
trasting AILARP with a traditional statistical approach. This traditional 
method relies on histological parameters such as growth patterns, nu-
clear grade, fibrosis, and inflammation, employing regression tech-
niques to predict recurrence outcomes. Fig. 1 visually demonstrates the 
usage of biopsy samples in both approaches, facilitating a direct com-
parison between the two models. 

2. Materials and methods 

2.1. Growth pattern analysis and recurrence prediction 

A cohort of 128 histology specimens of 124 patients who underwent 
diagnostic small lung biopsies was selected following the criteria from 
our previous publication (Wolf. et al [37]) and independently reviewed 
by two pathologists (JvT and JW), who were blinded to the diagnosis as 
well as the clinical data (institutional ethical approval obtained under 
MEC-2020–0732). The biopsies were reviewed according to the IASLC/ 
ATS/ERS classification using 5 % increments for recording the different 
histological subtypes. Tumors were divided into lepidic, acinar, papil-
lary, micropapillary and solid predominant, where the predominant 
pattern was defined as the pattern with the largest percentage. This 
scoring method was defined as the continuous growth pattern. For the 
dominant growth pattern, the dominant pattern was set 1 when present, 
the other patterns were set 0 and for the cumulative growth pattern the 
acinar and papillary pattern as well as the solid and micropapillary 
patterns were fused to intermediate and high-grade pattern respectively 
and then set 1 when present as dominant and 0 when absent [8]. In 
addition to determining the predominant growth pattern, a semi quan-
titative analysis of the nuclear grade, desmoplastic stroma reaction and 
inflammation within the tumor was made as reported earlier [37]. For 
all patients, clinical data concerning the medical follow-up from the 
patients’ medical records were also collected. This included date of 
histopathological diagnosis, follow-up time, survival data (date of 
death) and duration before a recurrence event. Since we were interested 
in a clinically relevant recurrence outcome, we divided the group into 
two classes, based on the absence or occurrence of a recurrence event 
recorded after therapy. 

The statistical model is based on a Cox proportional-hazards model 
which is a regression model to investigate the association between the 
recurrence time of patients and a set of predictor variables. To assess the 
predictive performance of the histological data, receiver operating curve 
(ROC) analyses were performed based on the predictions provided by 
the Cox model. The whole dataset was randomized and divided into a 
training (n = 98) and validation set (n = 28). To find the best- 
performing model, various combinations of the different growth pat-
terns together with additional histological parameters such as nuclear 
grading, fibrosis and inflammation were used. An overview of the 
parameter combinations used for training is provided in supplementary 
table S1. The “ROCR” package (R-version 4.0.5) was used for analysis. 

Fig. 1. Data distribution and experimental design for both models.  
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This analysis was compared to the recurrence prediction of the deep 
learning classification model. 

2.2. AI-based recurrence prediction 

In this section, we propose a deep learning framework for recurrence 
prediction, named AILARP, that uses color-, spatial and texture-based 
features from the image patches taken from LUAD biopsy specimens. 
To build the deep learning framework, we first split the patient data 
belonging to the two classes (i.e., a recurrence event recorded after 
therapy, or no recurrence recorded) into training, validation, and test 
samples to prevent data leakage. The test samples remained untouched 
during model training and were solely used for evaluation. In the data 
split, the training set contained 75 patients (21 recurred and 54 non- 
recurred), the validation set included 25 patients (7 recurred and 18 
non-recurred), and the test set comprised 28 patients (7 recurred and 21 
non-recurred); see supplementary table S2. The selected patients within 

the test set were identical to the validation set in the statistical model. 
In this work, we used a deep learning convolutional neural network 

(CNN) approach to design a classification model for the recurrence 
prediction of LUAD using the H&E WSI biopsy images. First, small 
patches of size 512 × 512 pixels at a magnification of 20× (0.46 um/ 
pixel) were extracted from the WSI images to train a CNN-based clas-
sification model for the recurrence prediction of LUAD. An extracted 
image patch was discarded when no cancer region was found in addition 
to surrounding tissue. In CNN-based classification models, feature 
extraction consists of several convolutional and pooling layer pairs. Each 
convolutional layer is a collection of digital filters to perform the 
convolution operation on the input data. In addition, the pooling layer is 
used as a dimensionality reduction layer and decides the threshold. 
However, traditional CNN-based classification models have a higher 
number of parameters, making models computationally expensive and 
difficult to train while having less data. To solve the computational 
complexity problem, we used an EfficientNet model [38] that uniformly 

Fig. 2. Proposed AI framework for LUAD recurrence prediction.  
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scales all depth/width/resolution dimensions using a compound coeffi-
cient. We used the classical EfficientNetV2-B0 network that is based on 
the inverted bottleneck residual blocks of MobileNetV2 [35] and 
squeeze-and-excitation blocks. In the model design, to enrich the feature 
space and prevent overtraining, we incorporate transfer learning into 
the pipeline [38]. Transfer learning is used to improve a learner from 
one domain by transferring information from a related domain [30]. 

In the experimental design a transfer learning approach is utilized 
that involves training an EfficientNetv2-b0 model [39] on image tiles 
resized to dimensions of 224 × 224 pixels. To enable this training, the 
original input images, initially sized at 512x512 pixels, are adjusted to 
the model’s specified input size of 224x224 pixels. This resizing opera-
tion is imperative due to the model’s specific requirements for input size. 
Fig. 2 illustrates the framework design of our proposed LUADRecAI 
method. 

MATLAB was used for image data pre-processing, Python environ-
ment and Pytorch library were used in the model design. The experi-
ments were performed in a four-fold cross-validation fashion. The data 
was split patient-wise to ensure there is no data leakage during the 
training process and test data was not mixed in the training and vali-
dation set. 

It is important to emphasize that for both methods, namely the sta-
tistical model and the AILARP model, the same test set is utilized to 
evaluate the performance of both models. This consistency ensures that 
both models are assessed using identical data, enabling a fair and direct 
comparison of their respective performances. Fig. 1 illustrates the pro-
cess of splitting patient-level WSIs into training and test sets, which were 
then utilized for both experiments. 

3. Results 

3.1. Clinical dataset 

A cohort of 128H&E WSI biopsy specimens of 124 patients was 
reviewed, of which 35 patients experienced recurrence and 89 were 
recurrence free. The median follow-up time was 1.98 years (or 724 
days), ranging between 0.05 and 9.981 years. An early loss to follow-up 
was caused by transfer or death of the patient, the latter due to reasons 
other than lung cancer. To gain a more comprehensive understanding of 
the dataset, we have provided a summary of the clinical characteristics 
in supplementary table S3. Notably, the patients have been categorized 
into two groups: those who experienced recurrences within a 5-year 
period and those who did not. 

3.2. Growth pattern analysis and recurrence prediction 

ROC analysis of histological parameters, containing growth pattern, 
nuclear grading, fibrosis, and inflammation revealed a maximal area 
under the curve (AUC) of 0.49 (see Fig. 3). Different combinations of 
growth patterns were tested together with the above listed histological 
parameters. Two model combinations showed an identical AUC: 
selecting the dominant growth pattern and selecting the dominant and 
the worst growth pattern with a cut-off of 20 % respectively. An over-
view of the different models tested is provided in supplementary table 
S4. 

3.3. AI-based recurrence prediction 

The experiments were performed in a four-fold cross-validation 
fashion, which yields outcomes as shown in Table 1 and supplementary 
table S5. The upper half of supplementary table S5 shows that while 
training the model using the training set and tuning its parameters on 
the validation set, fold1 yields the best patch-wise classification vali-
dation accuracy of 0.77, whereas fold3 provides the best validation 
precision, recall, and F1-score of 0.70, 0.72, and 0.71, respectively. The 
upper half of Table 1 shows that after training and tuning the AI models 

on the training and validation sets in a four-fold fashion, on the first fold, 
the proposed deep learning framework provided the best patch-wise 
classification test accuracy, precision, recall, and F1-score of 0.70, 
0.66, 0.59, and 0.62, respectively, compared to the rest of the folds. 

After obtaining the patch-wise results, we translated the results back 
to WSI (patient-wise). For example, let x be an image input, predc(x) the 
correctly predicted outcome on the image patches, labels(x) the actual 
ground truth for that outcome, M the correctly predicted patches and N 
the number of patches per WSI. Then the patient’s correct prediction 
distribution patientdist can be computed using (1). Using the correct 
prediction distribution for a WSI, the patient-wise prediction pred can be 
computed using (2), where 0.5 is the threshold used to generate the 
binary outcome for the patient-wise prediction. 

patientdist =

∑M
i=1predc(x)

∑N
j=1labels(x)

(1)  

pred =

{
1, patientdist > 0.5
0, patientdist ≤ 0.5, (2) 

The bottom half of supplementary table S5 shows patient-wise vali-
dation results on the used four-fold cross-validation setup. It shows that 
the third fold provides the best accuracy, precision, recall, and F1-score 
of 0.80, 0.89, 0.64, and 0.74 compared to the other folds. Although the 
proposed deep learning framework yielded the best patch-wise accuracy 
on the first fold, it provided the best patient-wise accuracy on the third 
fold because images used in the first fold had more similar features 

Fig. 3. An ROC curve of the statistical model on test set using dominant growth 
pattern and the dominant together with the worst growth pattern with a cut-off 
of 20% in predicting recurrence outcome. 

Table 1 
Test results using patch-wise (top half) and patient-wise (bottom half) four-fold 
cross-validation.   

Fold split Accuracy Precision Recall F1 score 

Patch-wise 1  0.70  0.66  0.59  0.62 
2  0.67  0.60  0.58  0.59 
3  0.68  0.60  0.57  0.58 
4  0.68  0.61  0.55  0.58 

Patient-wise 1  0.82  0.90  0.64  0.75 
2  0.82  0.90  0.64  0.75 
3  0.79  0.89  0.57  0.69 
4  0.79  0.89  0.57  0.69  
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found in the test set than in the third fold. The bottom half of Table 1 
shows patient-wise test results on the used four-fold cross-validation 
setup. It shows that the first fold provides the best accuracy, precision, 
recall, and F1-score of 0.82, 0.90, 0.64, and 0.75, respectively, 
compared to the rest of the folds. 

Fig. 4A and 4B show ROCs of the first fold for validation and test sets 
computed using patch-wise image outcomes from the H&E WSI. For 
both ROCs that yield AUCs of 0.65 and 0.74 on the validation set and 
test, respectively, the proposed recurrence prediction model performed 
better than the traditional approach discussed earlier. 

Fig. 4C and 4D show ROCs of the first fold for the test sets computed 
on patient-wise (WSI) outcomes. We noticed a fair improvement by 
translating the prediction outcomes from patches to the patient level 
(WSI). For both ROCs that yield AUCs of 0.83 and 0.87 on the validation 
set and test, the classification prediction of the model improved 
modestly by translating the prediction outcomes from patches to the 
patient (WSI) AUCs 0.18 and 0.13, respectively. Consequently, the ROCs 
computed using patient-wise outcomes show that the proposed recur-
rence prediction model performed better than the earlier traditional 
approach which showed an AUC of 0.49. 

There are unresolved questions about the explainability of various AI 
models, which makes it harder to entirely rely on them, especially in 
medical diagnosis, prognosis, and decision-making, where one incorrect 
prediction can have serious consequences. In this paper, we therefore 
used the gradient-weighted class activation mapping (gradCAM) 

algorithm to trace back the activated hot spots from the last hidden layer 
as a form of heat map from which pathologists could learn about the 
crucial patterns that lead to the correct prediction of the recurrence 
outcome. For this, we have taken tumor regions only to train the model. 
Fig. 5 shows a qualitative example of both the recurrence and non- 
recurrence patients, which are correctly predicted by the proposed 
recurrence prediction AI framework. In the gradCAM-based generated 
heatmap, yellow (light) color represents the features of the non- 
recurrence (positive) class and the blue (dark) color represents the 
recurrence (negative) class. 

Fig. 6 shows a zoomed-in cropped region of both original and heat-
map images of recurrence and non-recurrence biopsy samples shown in 
Fig. 5. In the heatmap shown in Fig. 6B and 6D, yellow regions refer to 
features that play a key role in the non-recurrence outcome prediction. 
Fig. 6A shows a region of interest (reconstructed from multiple patches) 
from a patient who was assigned a recurrence outcome. The image patch 
shows a tumor area with high cellularity. The tumor cells had enlarged 
and hyperchromatic nuclei, an increased nucleus-to-cytoplasm ratio, 
and were surrounded by only scant collagenous stroma. The dominant 
architectural pattern in the biopsy was assessed as solid growth. Fig. 6B 
shows the corresponding heatmap used by the proposed model. The 
heatmap shows very few spots selected in the yellow color, which means 
that almost no features were activated that correspond to the non- 
recurrence outcome. Hence, the result belongs to the recurrence 
outcome. Similarly, Fig. 6C depicts a case assigned to a non-recurrence 

Fig. 4. Validation and test ROCs for patient-wise best outcome ((A) validation and (B) test) and image patch-wise test outcome ((C) validation and (D) test).  
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Fig. 5. Hotspot detection in recurred and non-recurred biopsy samples using gradCAM on patient level WSI. (A) Original WSI (recurred patient), (B) WSI with 
heatmap based hotspot, (C) original WSI (non-recurred patient), (D) WSI with heatmap based hotspot. Hotspots indicate areas of feature extraction where yellow 
(light) color represents features related to non-recurrence class and blue (dark) color represents features representing recurrence class. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Zoomed-in crops of the hotspot in recurred and non-recurred biopsy samples shown in Fig. 5. (A) Crop from original WSI (recurred patient), (B) Crop from 
WSI with heatmap based hotspot, (C) Crop from original WSI (non-recurred patient), (D) from WSI with heatmap based hotspot. 
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outcome that presented with lower cell density, and smaller tumor cells. 
The dominant pattern was represented by lepidic growth. Fig. 6D shows 
the heatmap of the proposed model generated using a selected region of 
interest. As expected, it shows a considerable number of cellular struc-
tures in yellow color, which means it has more features corresponding to 
the non-recurrence outcome. 

4. Conclusions and discussion 

In this study, we compare a classical statistical model for predicting 
recurrence in early and locally advanced stage LUAD using histopath-
ological evaluation data and a deep learning (CNN) approach to develop 
a classification model for recurrence prediction using H&E WSI biopsy 
images. The deep learning classification framework proposed in this 
publication had superior recurrence prediction as compared to the 
traditional approach utilizing histological information. This classifica-
tion model yielded a test accuracy of 0.70 and 0.82 and an AUC of 0.74 
and 0.87 on patch-wise and patient-wise H&E WSI respectively, 
compared to the traditional model which showed an AUC of 0.49. These 
findings for our AI classifier are comparable with those of Shim et al., 
who developed DeepRePath, a model based on a deep CNN using multi- 
scale pathology images from resection specimens. Their model achieved 
an AUC of 0.77 and 0.76 in their two LUAD cohorts [36]. On a cellular 
level, among other items (such as necrosis), they also described nuclear 
features such as discohesive tumor cells and hyperchromatic nuclei as 
hallmarks for recurrence. This latter feature was also observed in our 
heatmaps from the recurrence positive cases. A major difference be-
tween both approaches is the amount of tissue and patients analyzed. 
Compared to Shim et al., we used a smaller cohort and trained and 
validated our model on biopsy specimens. 

It is important to note that by applying our deep learning strategy on 
entire tumor specimens in biopsies with only the recurrence status as 
label, we did not impose the classical IASLC/ATS/ERS LUAD scoring 
rules as features for the classification. Instead using gradCAM for 
explainable AI, we aimed at identifying the features that may be asso-
ciated to the recurrence status by the proposed CNN. We compared our 
deep learning model with the traditional statistical model using ROC 
analysis which used different histological features to build the model to 
demonstrate differences in the model’s performance. An explanation for 
the inferior performance of the traditional statistical model might be the 
exclusion of additional histological features which in resected specimens 
are known to be accompanied by a higher chance of recurrence. For 
example, the presence of (lymph-) angio-invasion which is a significant 
prognostic factor in resected early-stage adenocarcinoma was not 
included [40–42]. Additionally, the presence or absence of necrosis also 
seems predictive [43,44], a feature which was also found to be relevant 
in the DeepRePath model by Shim et al [36]. Furthermore, pleural in-
vasion is correlated with survival, and its impact on survival has even led 
to the inclusion in the TNM classification [45,46]. However, in contrast 
to necrosis or lymphatic vessel invasion, pleural invasion is almost 
impossible to diagnose when dealing with small biopsy samples. 

Another reason for the inferior model performance of the classical 
approach is the data selection. In the present model, we only focused on 
histology data to better compare CNN with the traditional approach and 
did not take clinical or molecular data into consideration. From our 
previous work [37] and from the work of Moreira et al. [9] we had the 
experience that feeding the model with additional clinical data can 
improve its performance. Thus Moreira et al. achieved an AUC of 0.77 
for recurrence prediction when combining clinical data with the domi-
nant and second dominant growth pattern on resected LUAD specimens. 
This indicates that combining imaging data with clinical information 
can increase the model’s performance. 

An advantage of using a recurrence prediction model on small bi-
opsies is its broad availability. Most patients undergo a transbronchial or 
CT-guided biopsy during diagnostic workup when presenting with a 
pulmonary mass. Recurrence prediction can be used to guide the extent 

of the surgical procedure and it is of clinical interest predominantly 
when considering the duration of follow-up and the need for adjuvant 
treatment. Whilst in WSI from resected patients, the removed tumor 
might offer more information, however, not all patients undergo surgi-
cal therapy, which necessitates a reliable model predicting recurrence 
on small biopsy samples. This is especially true for patients who are 
selected for SABR or who undergo neoadjuvant treatment. 

The disadvantage of recurrence prediction on small biopsies is the 
fact that only limited amounts of tumor tissue are analyzed and that 
biopsy specimens are prone to sampling errors. In a biopsy with an 
acinar pattern there may be an adjacent high-grade pattern such as solid 
or micropapillary which might be missed, but highly influences prog-
nosis. Even when CNN seems to focus more on nuclear than architectural 
features the problem of sampling error is not solved, since high-grade 
growth patterns often show a higher nuclear grade [37]. 

Whilst our deep learning model was trained and validated only on a 
small cohort (n = 124) we still have a high performance as compared to 
the existing statistical model. We are planning to increase the number of 
biopsies, ideally as an external cohort scanned under different settings to 
reduce bias, to train, validate and test our deep learning model for 
recurrence prediction. 

In summary, the classical model used in the current study can 
moderately discriminate between recurrence and non-recurrence. 
However, due to the high recurrence rates of early-stage LUAD, there 
is a need for a more reliable assessment of recurrence even on a low 
amount of tissue. Therefore, we developed a deep learning classifier that 
works purely on image patches of tumorous tissue without a need for 
additional information on the clinical history or mutational state, which 
simplifies data collection. This makes the classifier universally deploy-
able on lung biopsy WSI with an acceptable AUC of 0.87 on patient-wise 
WSI. This type of classifier may help to determine follow-up regimens 
and to select the correct type and extent of curative surgical or radio-
therapeutic treatment in early-stage adenocarcinoma. Moreover, it may 
in future guide the use of neo-adjuvant or adjuvant therapy, thus leading 
to potential de-escalation of (peri-operative) systemic treatment in cases 
which are not likely to recur following curative tumor ablation. 
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