93 research outputs found

    Acupuncture in Treatment of Chronic Functional Constipation

    Get PDF
    Constipation is not only a symptom but is a predominant presenting symptom in many diseases. The prevalence is between 3 and 27% worldwide, and is especially prevalent in the elderly population. The aetiology is multifactorial. Laxative abuse or enema use are usually a norm in patients’ constipation. Patients tend not to seek further medical aid after several unsuccessful therapies and this can seriously affect their quality of life

    Performance Evaluation of Cluster Validity Indices (CVIs) on Multi/Hyperspectral Remote Sensing Datasets

    Get PDF
    The number of clusters (i.e., the number of classes) for unsupervised classification has been recognized as an important part of remote sensing image clustering analysis. The number of classes is usually determined by cluster validity indices (CVIs). Although many CVIs have been proposed, few studies have compared and evaluated their effectiveness on remote sensing datasets. In this paper, the performance of 16 representative and commonly-used CVIs was comprehensively tested by applying the fuzzy c-means (FCM) algorithm to cluster nine types of remote sensing datasets, including multispectral (QuickBird, Landsat TM, Landsat ETM+, FLC1, and GaoFen-1) and hyperspectral datasets (Hyperion, HYDICE, ROSIS, and AVIRIS). The preliminary experimental results showed that most CVIs, including the commonly used DBI (Davies-Bouldin index) and XBI (Xie-Beni index), were not suitable for remote sensing images (especially for hyperspectral images) due to significant between-cluster overlaps; the only effective index for both multispectral and hyperspectral data sets was the WSJ index (WSJI). Such important conclusions can serve as a guideline for future remote sensing image clustering applications

    Analgesia for total knee arthroplasty: a meta-analysis comparing local infiltration and femoral nerve block

    Get PDF
    Patients frequently experience postoperative pain after a total knee arthroplasty; such pain is always challenging to treat and may delay the patient’s recovery. It is unclear whether local infiltration or a femoral nerve block offers a better analgesic effect after total knee arthroplasty.We performed a systematic review and meta-analysis of randomized controlled trials to compare local infiltration with a femoral nerve block in patients who underwent a primary unilateral total knee arthroplasty. We searched Pubmed, EMBASE, and the Cochrane Library through December 2014. Two reviewers scanned abstracts and extracted data. The data collected included numeric rating scale values for pain at rest and pain upon movement and opioid consumption in the first 24 hours. Mean differences with 95% confidence intervals were calculated for each end point. A sensitivity analysis was conducted to evaluate potential sources of heterogeneity.While the numeric rating scale values for pain upon movement (MD-0.62; 95%CI: -1.13 to -0.12; p=0.02) in the first 24 hours differed significantly between the patients who received local infiltration and those who received a femoral nerve block, there were no differences in the numeric rating scale results for pain at rest (MD-0.42; 95%CI:-1.32 to 0.47; p=0.35) or opioid consumption (MD 2.92; 95%CI:-1.32 to 7.16; p=0.18) in the first 24 hours.Local infiltration and femoral nerve block showed no significant differences in pain intensity at rest or opioid consumption after total knee arthroplasty, but the femoral nerve block was associated with reduced pain upon movement

    Deep reinforcement learning for real-time economic energy management of microgrid system considering uncertainties

    Get PDF
    The electric power grid is changing from a traditional power system to a modern, smart, and integrated power system. Microgrids (MGs) play a vital role in combining distributed renewable energy resources (RESs) with traditional electric power systems. Intermittency, randomness, and volatility constitute the disadvantages of distributed RESs. MGs with high penetrations of renewable energy and random load demand cannot ignore these uncertainties, making it difficult to operate them effectively and economically. To realize the optimal scheduling of MGs, a real-time economic energy management strategy based on deep reinforcement learning (DRL) is proposed in this paper. Different from traditional model-based approaches, this strategy is learning based, and it has no requirements for an explicit model of uncertainty. Taking into account the uncertainties in RESs, load demand, and electricity prices, we formulate a Markov decision process for the real-time economic energy management problem of MGs. The objective is to minimize the daily operating cost of the system by scheduling controllable distributed generators and energy storage systems. In this paper, a deep deterministic policy gradient (DDPG) is introduced as a method for resolving the Markov decision process. The DDPG is a novel policy-based DRL approach with continuous state and action spaces. The DDPG is trained to learn the characteristics of uncertainties of the load, RES output, and electricity price using historical data from real power systems. The effectiveness of the proposed approach is validated through the designed simulation experiments. In the second experiment of our designed simulation, the proposed DRL method is compared to DQN, SAC, PPO, and MPC methods, and it is able to reduce the operating costs by 29.59%, 17.39%, 6.36%, and 9.55% on the June test set and 30.96%, 18.34%, 5.73%, and 10.16% on the November test set, respectively. The numerical results validate the practical value of the proposed DRL algorithm in addressing economic operation issues in MGs, as it demonstrates the algorithm’s ability to effectively leverage the energy storage system to reduce the operating costs across a range of scenarios

    Iterative Deep Learning (IDL) for agricultural landscape classification using fine spatial resolution remotely sensed imagery

    Get PDF
    The agricultural landscape can be interpreted at different semantic levels, such as fine low-level crop (LLC) classes (e.g., Wheat, Almond, and Alfalfa) and broad high-level crop (HLC) classes (e.g., Winter crops, Tree crops, and Forage). The LLC and HLC are hierarchically correlated with each other, but such intrinsically hierarchical relationships have been overlooked in previous crop classification studies in remote sensing. In this research, a novel Iterative Deep Learning (IDL) framework was proposed for the classification of complex agricultural landscapes using remotely sensed imagery. The IDL adopts an object-based convolutional neural network (OCNN) as the basic classifier for both the LLC and HLC classifications, which has the advantage of maintaining precise crop parcel boundaries. In IDL, the HLC classification implemented by the OCNN is conditional upon the LLC classification probabilities, whereas the HLC probabilities combined with the original imagery are, in turn, re-used as inputs to the OCNN to enhance the LLC classification. Such an iterative updating procedure forms a Markov process, where both the LLC and HLC classifications are refined and evolve collaboratively. The effectiveness of the IDL was tested on two heterogeneous agricultural fields using fine spatial resolution (FSR) SAR and optical imagery. The experimental results demonstrate that the iterative process of IDL helps to resolve contradictions within the class hierarchies. The new proposed IDL consistently increased the accuracies of both the LLC and HLC classifications with iteration, and achieved the highest accuracies for each at four iterations. The average overall accuracies were 88.4% for LLC and 91.2% for HLC, for both study sites, far greater than the accuracies of the state-of-the-art benchmarks, including the pixel-wise CNN (81.7% and 85.9%), object-based image analysis (OBIA) (84.0% and 85.8%), and OCNN (84.0% and 88.4%). To the best of our knowledge, the proposed model is the first to identify and use the relationship between the class levels in an ontological hierarchy in a remote sensing classification process. It is applied here to increase progressively the accuracy of classification at two levels for a complex agricultural landscape. As such IDL represents an entirely new paradigm for remote sensing image classification. Moreover, the promising results demonstrate the great potential of the proposed IDL with wide application prospect

    A novel unsupervised bee colony optimization (UBCO) method for remote sensing image classification:a case study in a heterogeneous marsh area

    Get PDF
    Unsupervised image classification is an important means to obtain land use/cover information in the field of remote sensing, since it does not require initial knowledge (training samples) for classification. Traditional methods such as k-means and ISODATA have limitations in solving this NP-hard unsupervised classification problem, mainly due to their strict assumptions about the data distribution. The bee colony optimization (BCO) is a new type of swarm intelligence, based upon which a simple and novel unsupervised bee colony optimization (UBCO) method is proposed for remote sensing image classification. UBCO possesses powerful exploitation and exploration capacities that are carried out by employed bees, onlookers and scouts. This enables the promising regions to be globally searched quickly and thoroughly, without becoming trapped on local optima. In addition, it has no restrictions on data distribution, and thus is especially suitable for handling complex remote sensing data. We tested the method on the Zhalong National Nature Reserve (ZNNR)—a typical inland wetland ecosystem in China, whose landscape is heterogeneous. The preliminary results showed that UBCO (overall accuracy = 80.81%) achieved statistically significant better classification result (McNemar test) in comparison with traditional k-means (63.11%) and other intelligent clustering methods built on genetic algorithm (UGA, 71.49%), differential evolution (UDE, 77.57%) and particle swarm optimization (UPSO, 69.86%). The robustness and superiority of UBCO were also demonstrated from the two other study sites next to the ZNNR with distinct landscapes (urban and natural landscapes). Enabling to consistently find the optimal or nearly optimal global solution in image clustering, the UBCO is thus suggested as a robust method for unsupervised remote sensing image classification, especially in the case of heterogeneous areas

    Modelling and predicting of MODIS leaf area index time series based on a hybrid SARIMA and BP neural network method

    Get PDF
    The modeling and predicting of vegetation Leaf area index (LAI) is an important component of land surface model and assimilation of remote sensing data. The MODIS LAI product (i.e. MOD15A2) is one of the most widely used LAI data sources. However, the time series of MODIS LAI contains some data of low quality. For example, because of the influence of the cloud, aerosol, etc., the MODIS LAI presents the characteristics of the discontinuous in time and space. In fact, the time series of MODIS LAI include both linear and nonlinear components, which cannot be accurately modeled and predicted by either linear method or nonlinear method along. In this paper, the original LAI time series data were first smoothed with Savitzky-Golay (SG) filtration and linear interpolation; SARIMA, BP neural network and a hybrid method of SARIMA-BP neural netwok were then used for modeling and predicting MODIS LAI time series. The SARIMA-BP neural network combined both SARIMA and BP neural network, which could model the linear and the nonlinear component of MODIS LAI time series respectively. That is, the final result of SARIMA-BP neural network was the sum of the results of the two methods. Experiments showed that the time series of MODIS LAI that were smoothed with the SG filtration and linear interpolation were more smooth than original time series, with a determination coefficient up to 0.981, closer to 1 than that of SARIMA (0.941) and BP neural network (0.884); the correlation coefficient between SARIMA-BP neural network and the observation is 0.991, higher than that of between SARIMA (0.971) or BP neural network (0.942) SARIMA and the observation. Thus, it can be concluded that, the proposed SARIMA-BP neural network method can better adapt to the LAI time series, and it outperforms the SARIMA and BP neural network methods

    LLM-Mini-CEX: Automatic Evaluation of Large Language Model for Diagnostic Conversation

    Full text link
    There is an increasing interest in developing LLMs for medical diagnosis to improve diagnosis efficiency. Despite their alluring technological potential, there is no unified and comprehensive evaluation criterion, leading to the inability to evaluate the quality and potential risks of medical LLMs, further hindering the application of LLMs in medical treatment scenarios. Besides, current evaluations heavily rely on labor-intensive interactions with LLMs to obtain diagnostic dialogues and human evaluation on the quality of diagnosis dialogue. To tackle the lack of unified and comprehensive evaluation criterion, we first initially establish an evaluation criterion, termed LLM-specific Mini-CEX to assess the diagnostic capabilities of LLMs effectively, based on original Mini-CEX. To address the labor-intensive interaction problem, we develop a patient simulator to engage in automatic conversations with LLMs, and utilize ChatGPT for evaluating diagnosis dialogues automatically. Experimental results show that the LLM-specific Mini-CEX is adequate and necessary to evaluate medical diagnosis dialogue. Besides, ChatGPT can replace manual evaluation on the metrics of humanistic qualities and provides reproducible and automated comparisons between different LLMs

    Soluble interleukin-2 receptor combined with interleukin-8 is a powerful predictor of future adverse cardiovascular events in patients with acute myocardial infarction

    Get PDF
    BackgroundLittle is known about the role of interleukin (IL) in patients with acute myocardial infarction (MI), especially soluble IL-2 receptor (sIL-2R) and IL-8. We aim to evaluate, in MI patients, the predictive value of serum sIL-2R and IL-8 for future major adverse cardiovascular events (MACEs), and compare them with current biomarkers reflecting myocardial inflammation and injury.MethodsThis was a prospective, single-center cohort study. We measured serum concentrations of IL-1β, sIL-2R, IL-6, IL-8 and IL-10. Levels of current biomarkers for predicting MACEs were measured, including high-sensitivity C reactive protein, cardiac troponin T and N-terminal pro-brain natriuretic peptide. Clinical events were collected during 1-year and a median of 2.2 years (long-term) follow-up.ResultsTwenty-four patients (13.8%, 24/173) experienced MACEs during 1-year follow-up and 40 patients (23.1%, 40/173) during long-term follow-up. Of the five interleukins studied, only sIL-2R and IL-8 were independently associated with endpoints during 1-year or long-term follow-up. Patients with high sIL-2R or IL-8 levels (higher than the cutoff value) had a significantly higher risk of MACEs during 1-year (sIL-2R: HR 7.7, 3.3–18.0, p < 0.001; IL-8: HR 4.8, 2.1–10.7, p < 0.001) and long-term (sIL-2R: HR 7.7, 3.3–18.0, p < 0.001; IL-8: HR 4.8, 2.1–10.7, p < 0.001) follow-up. Receiver operator characteristic curve analysis regarding predictive accuracy for MACEs during 1-year follow-up showed that the area under the curve for sIL-2R, IL-8, sIL-2R combined with IL-8 was 0.66 (0.54–0.79, p = 0.011), 0.69 (0.56–0.82, p < 0.001) and 0.720 (0.59–0.85, p < 0.001), whose predictive value were superior to that of current biomarkers. The addition of sIL-2R combined with IL-8 to the existing prediction model resulted in a significant improvement in predictive power (p = 0.029), prompting a 20.8% increase in the proportion of correct classifications.ConclusionsHigh serum sIL-2R combined with IL-8 levels was significantly associated with MACEs during follow-up in patients with MI, suggesting that sIL-2R combined with IL-8 may be a helpful biomarker for identifying the increased risk of new cardiovascular events. IL-2 and IL-8 would be promising therapeutic targets for anti-inflammatory therapy
    • …
    corecore