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Abstract: The number of clusters (i.e., the number of classes) for unsupervised classification has been
recognized as an important part of remote sensing image clustering analysis. The number of classes is
usually determined by cluster validity indices (CVIs). Although many CVIs have been proposed, few
studies have compared and evaluated their effectiveness on remote sensing datasets. In this paper, the
performance of 16 representative and commonly-used CVIs was comprehensively tested by applying
the fuzzy c-means (FCM) algorithm to cluster nine types of remote sensing datasets, including
multispectral (QuickBird, Landsat TM, Landsat ETM+, FLC1, and GaoFen-1) and hyperspectral
datasets (Hyperion, HYDICE, ROSIS, and AVIRIS). The preliminary experimental results showed
that most CVIs, including the commonly used DBI (Davies-Bouldin index) and XBI (Xie-Beni index),
were not suitable for remote sensing images (especially for hyperspectral images) due to significant
between-cluster overlaps; the only effective index for both multispectral and hyperspectral data sets
was the WSJ index (WSJI). Such important conclusions can serve as a guideline for future remote
sensing image clustering applications.

Keywords: cluster validity index; remote sensing; image clustering; cluster number of image

1. Introduction

Land use/cover data is crucial for diverse disciplines (e.g., ecology, geography, and climatology)
since it serves as a basis for various “real world” applications [1–3]. Remote sensing technique have
become the mainstream means to acquire land use/cover data, owing to its specific advantages,
including synoptic views and cost-effectiveness [4,5]. Remote sensing image clustering, which utilizes
only the statistical information inherent in the image without human interference, is one of the most
widely used methods to produce land cover information [6,7]. It is also valued because of its high
efficiency (i.e., it does not use training samples) [8].

The success of clustering (unsupervised classification) depends greatly on the proper
determination of cluster number (i.e., the optimal number of classes) [9]: if the number of classes
selected is less than the actual number, one or more separate classes would be merged into other classes;
conversely, if larger, one or more homogeneous classes would be separated into different classes. The
consequence is that the information contained in the raw data is incorrectly explored and used and the
classification results will not be coincident with the “real” situation [10]. In this circumstance, the role
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of the cluster validity index (CVI), which is designed to detect the optimal cluster number for a given
dataset, therefore, becomes critical [11].

Generally, a CVI is comprised of two indicators, namely compactness and separation.
Compactness, which indicates the concentration of data points that belong to the same cluster, is
usually measured by the distance between each data point and its cluster center [10]: the smaller the
distance, the better the compactness of the cluster. Separation, which expresses the degree of isolation
among clusters, is usually measured by the distance between cluster centroids: the larger the distance,
the stronger the isolation of clusters [12]. Ideally, a dataset is partitioned with high compactness within
each cluster and large separation between each pair of clusters. However, the two indicators are often
mutually conflicting [13]; with increasing cluster number, the compactness becomes larger while the
separation becomes smaller. Therefore, a good balance between the two indicators is required in the
design of CVIs. To date, researchers from different disciplines have proposed a large number of CVIs
for various types of applications.

In the remote sensing field, CVIs such as the Davies-Bouldin index (DBI) and the Xie-Beni index
(XBI) have been widely used in image clustering applications. For example, DBI was employed to
evaluate the fitness of candidate clustering by Bandyopadhyay and Maulik [9], and to guide satellite
image clustering by Das et al. [14]; XBI was used to determine the optimal cluster number of IRS
image by Maulik and Saha [15]; and was applied for multi-objective automatic image clustering [16,17].
However, in the absence of systematic and comprehensive evaluation of CVIs for remote sensing
applications, CVIs are usually subjectively selected. This means that, without evaluation, they cannot
necessarily be relied on. In fact, remote sensing data is well known for its complexity and uncertainty,
with the specific characteristics as follows: (1) fuzzy and nonlinear class boundaries; (2) significant
overlap among pixels from different classes (the overlap problem) [18]; and (3) high dimensionality
and huge quantities of data. An appropriate CVI should, therefore, be designed taking account of
these properties of remote sensing data.

To draw some general conclusions, although some efforts have been made to compare or evaluate
the performance of CVIs in different environments [10,19–21], little attention has been paid to remote
sensing data. Thus, the question remains as to how to select appropriate CVIs for remote sensing
image clustering. Such a question can only be answered through an extensive evaluation of CVIs on
various types of remote sensing data sets. However, to the best of our knowledge, few studies have
addressed this issue. The objective of this paper is to fill that gap and identify one or several CVIs
that are generally suitable for remote sensing datasets from a total of sixteen CVIs. The commonly
used fuzzy c-means (FCM) and K-means algorithms were applied in this paper to cluster nine types of
remote sensing datasets, including five types of multispectral and four types of hyperspectral images.
This is of great significance since it can serve as a guideline for future remote sensing image clustering
with diverse data types.

The remainder of this paper is organized as follows. In Section 2, the clustering problem and
the FCM and K-means algorithms are briefly outlined; the sixteen CVIs evaluated in this paper are
reviewed and detailed in Section 3; the experiments and results are provided in Section 4; the results
are analyzed and discussed in Section 5; and conclusions are drawn in Section 6.

2. The Clustering Problem

In this section, we briefly review the clustering problem and the classical fuzzy c-means algorithm.

2.1. The Clustering Problem

Clustering is widely used in many fields to derive information on distributions and patterns in
raw data [11]. It aims at partitioning a given data set into groups (clusters) according to a predefined
criteria (usually the Euclidean distance) [20]. Let X “ tx1, x2, . . . , xNu be a possible given dataset (with
N points), and K the number of clusters (i.e., patterns) of the data. The purpose of clustering is to
evolve a partition matrix UpXq of the data to determine a partition C “ tC1, C2, . . . , CKu, in which the
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points in the same cluster are as close (i.e., have high similarity) as possible while those in different
clusters are dispersed as far (i.e., have high dissimilarly) as possible. The partition matrix can be
denoted as U “ rµi js, 1 ď i ď K, 1 ď j ď N, where µij is the grade of membership of point xj to cluster
Cipi “ 1, . . . , Kq.

Clustering can be performed in two forms: crisp and fuzzy. In crisp clustering, any one point
of the given dataset belongs to only one class of clusters, that is µij “ 1 if xj P Ci; otherwise µij “ 0.
In fuzzy clustering, a point may belong to several or all classes with a certain grade of membership.
In this case, the partition matrix UpXq is represented as U “ rµi js, where µij P r0, 1s. It should be
noted that crisp clustering is a special version of fuzzy clustering in which the grade of membership
of a point to a cluster is either 0 or 1. Once a fuzzy clustering structure is determined by a specific
algorithm, each point of the given data will be assigned to the most likely cluster (i.e., with the largest
grade of membership for that point). Through this process, the fuzzy clustering can be transformed
into crisp clustering for real applications.

2.2. The Fuzzy C-Means Algorithm

The classical fuzzy c-means (FCM) algorithm proposed by Bezdek [22] has been successfully
used in a wide domain of applications, such as agricultural engineering, image analysis, and target
recognition, among others [20,23,24]. The objective of FCM is to evolve a set of cluster centers through
minimizing the weighted within-cluster sum of squared error function Jm, which is defined as:

Jm “

N
ÿ

j“1

K
ÿ

i“1

pµijq
m||xj ´ zi||2, 0 ă

N
ÿ

j“1

µij ă N, i P t1, 2, . . . , Ku (1)

where Z “ pz1, z2, . . . , zKq is a group of cluster centers, zi P Rd (d is the number of features included
in each point). || . . . || is a Euclidean norm measuring the similarity between a point and the
corresponding cluster center. The weighting exponent m controls the fuzziness of the grade of
membership. The partition matrix µij and the cluster center set Z in the function Jm can be calculated
using the following equations:

µij “

»

–

K
ÿ

i“1

p
||xj ´ zi||2

||xj ´ zk||2 q

1{pm´1q
fi

fl

´1

, i P t1, 2, . . . , Ku, j P t1, 2, . . . , Nu (2)

and

zi “

N
ř

j“1
pµijq

mxj

N
ř

j“1
pµijq

m
, i P t1, 2, . . . , Ku (3)

The FCM algorithm iteratively searches the fuzzy partition matrix and the cluster centers with
a greedy searching strategy, until either no more changes are found in the cluster centers or the
differences between two successive cluster centers fall below a predefined threshold. Normally, the
FCM algorithm consists of the following steps:

Step 1: Determine the number of cluster K and the weighting exponent m, initialize the cluster
centers Zpz1, z2, . . . , zKq randomly, and define a threshold of iteration termination ε.

Step 2: Update the fuzzy partition matrix using Equation (2).
Step 3: Recalculate the cluster center set Znew using Equation (3).
Step 4: If ||Znew ´ Z|| ď ε, stop the iteration and output the clustering result; otherwise, go to

step 2.
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2.3. The K-Means Algorithm

The K-means algorithm is one of the most commonly used methods for unsupervised image
classification [2]. Similar to FCM, the objective of K-means is to determine a set of cluster centers
through minimizing the clustering metric M, which is defined as

M “

K
ÿ

i“1

ÿ

xjPCi

‖ xj ´ zi ‖ (4)

where Ci represents a cluster with zi as its cluster center.
A greedy searching strategy is also employed in K-means to search for the optimal set of cluster

centers, until a predefined termination condition is met. The main steps of the algorithm are as follows:
Step 1: Determine the cluster number K and the maximum iteration number Max_ iter to generate

the initial cluster centers randomly.
Step 2: Assign pixel xj to cluster Ci if ||xj ´ zi|| ă ||xj ´ zk||, k P t1, 2, . . . , Ku, and i ‰ k.

Step 3: Calculate new cluster center (znew
i

) for cluster Ci as znew
i

“
1
Ni

ř

xjPCi

xj, where Ni denotes the

number of pixels in cluster Ci.
Step 4: If Max_ iter is reached, terminate the cycle and output the clustering result; otherwise, go

to Step 2.

3. Cluster Validity Indices (CVIs)

Broadly, current fuzzy CVIs (for fuzzy clustering) can be classified into two forms: one (called
simple CVIs) only considers the fuzzy grades of membership to a class of the data (e.g., the partition
coefficient), the other (called advanced CVIs) takes both fuzzy grads of membership and the geometrical
properties (i.e., the structure) of the original data into account (e.g., the well-known XBI) [10]. In fact,
crisp CVIs (for crisp clustering) which only consider the geometrical properties of the original data
(e.g., the well-known DBI) are special versions of advanced CVIs, and can also be used in fuzzy image
clustering analysis [12]. In this study, a total of 16 representative and commonly used CVIs of different
forms were chosen for evaluation, including three simple CVIs, and thirteen advanced CVIs.

It is noteworthy that some CVIs (e.g., XBI) indicate the optimal cluster number of data by using
the maximum value, while the others use the minimum value. For convenience, we subsequently
denote the former (the larger, the better CVI) as CVI+, and the latter (the lower, the better CVI) as CVI´.

3.1. Simple CVIs

(1) The partition coefficient (PC+) [25] evaluates the compactness by using the averaged strength
of belongingness of data, and is defined as:

PCpKq “
1
N

K
ÿ

i“1

N
ÿ

j“1

µ2
ij (5)

(2) The partition entropy (PE´) is formed based upon the logarithmic form of PC [22], and is
defined as:

PEpKq “ ´
1
N

K
ÿ

i“1

N
ÿ

j“1

µij log2puijq (6)

(3) The modification of PC (MPC+) [26] is designed to reduce the monotonic tendency of PC and
PE. The index is defined as:

MPCpKq “ 1´
K

K´ 1
p1´ PCq (7)
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3.2. Advanced CVIs

(1) The Davies-Bouldin Index (DBI´) [27] estimates the ratio of within-cluster compactness to
between-cluster separation, which is defined as:

DBIpKq “
1
K

K
ÿ

i“1

maxt
Si ` Sk

||zi ´ zk||2 u, i ‰ k, (8)

where Si “
1
Ni

ř

xjPCi
||xj ´ zi||2, Ni denotes the number of data points in the ith cluster (Ci).

(2) The Dunn Index (DI+) [28] evaluates a clustering by taking the minimum distance
between-cluster as separation and the maximum distance between each pair of within-cluster points
as compactness. The original index is defined as [28]:

DunnpKq “ min
1ďpďK

¨

˝ min
s`1ďqďK´1

p
dispCp, Cqq

max
1ďiďK

diapCiq
q

˛

‚, (9)

where dispCp, Cqq refers to the distance between the pth and qth clusters, is calculated as dispCp, Cqq “

min
xjPCp ,xlPCq

p||xj ´ xl||q; diapCiq denotes the maximum distance between any pair of within-cluster

points, which is measured as diapCiq “ max
xj ,xlPCi

p||xj ´ xl||q.

(3) The Calinski-Harabasz Index (CHI+) [29] is a ratio-type index in which compactness is
measured by the distance (WK) between each within-cluster point to its centroid, and separation
is based on the distance (BK) between each centroid to the global centroid (z), i.e.,:

CHIpKq “
BK

K´ 1
{

WK
N ´ K

, (10)

where BK “
K
ř

i“1
Ni||zi ´ z||2, WK “

K
ř

i“1

ř

xjPCi

||xj ´ zi||2.

(4) The Fukuyama and Sugeno Index (FSI´) [30] is designed to measure the discrepancy between
fuzzy compactness and fuzzy separation, i.e.,:

FSIpKq “
K
ÿ

i“1

N
ÿ

j“1

um
ij ||xj ´ zi||2

´

K
ÿ

i“1

N
ÿ

j“1

um
ij ||zi ´

´
z||

2
(11)

(5) The Xie and Beni Index (XBI´) [31] is also a ratio-type index, which measures the average
within-cluster fuzzy compactness against the minimum between-cluster separation, i.e.,:

XBIpKq “

K
ř

i“1

N
ř

j“1
µ2

ij||xj ´ zi||2

N ¨min
i‰k
t||zi ´ zk||2

u
(12)

(6) The Kwon Index (KI´) [32] aims to overcome the shortcoming of XBI that decreases
monotonically when the cluster number approaches the actual cluster number of data. Here, a
penalty function was introduced to the numerator of XBI, i.e.,:

KIpKq “

K
ř

i“1

N
ř

j“1
µ2

ij||xj ´ zi||2
`

1
K

K
ř

i“1
||zi ´

´
z||

2

min
i‰k
t||zi ´ zk||2

u
(13)
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(7) The Tang Index (TI´) [33] also introduced a similar penalty function to the numerator
of XBI, i.e.:

TIpKq “

K
ř

i“1

N
ř

j“1
µ2

ij||xj ´ zi||2
`

1
KpK´ 1q

K
ř

i“1

K
ř

k“1
k‰i

||zi ´ zk||2

min
i‰k

||zi ´ zk||2
` 1{K

(14)

(8) The SC Index (SCI+) [34] measures the fuzzy compactness/separation ratio of clustering by
using the difference between two functions, SC1 and SC2, i.e.,:

SCIpKq “ SC1pKq ´ SC2pKq, (15)

where SC1 (Equation (16)) evaluates the compactness/separation ratio by considering the grades of
membership and the original data: the larger the SC1, the better the clustering:

SC1pKq “
p

1
K

K
ř

i“1
||zi ´ z||q

K
ř

i“1
p

N
ř

j“1
µm

ij ||xj ´ zi||2
{

N
ř

j“1
µijq

, (16)

while SC2 (Equation (17)) measures the ratio by using the grades of membership only: the smaller the
SC2, the better the clustering:

SC2pKq “

K´1
ř

i“1

K
ř

k“i`1
p

N
ř

j“1
pminpµij, µkjq

2
q{njkq

p
N
ř

j“1
max

1ďiďK
µ2

ijq{p
N
ř

j“1
max

1ďiďK
µijq

(17)

where njk “
N
ř

j“1
minpµij, µkjq.

(9) The Compose Within and Between scattering Index (CWBI´) [19] assesses the average
compactness and separation of fuzzy clustering by using the sum of two functions, i.e.,:

CWBIpKq “ αScatpKq `DispKq, (18)

where α is a weighing factor which equals DispKmaxq, the DispKqwith the maximum cluster number;
and ScatpKq refers to the average scattering (i.e., compactness) for K clusters, which is defined as:

ScatpKq “

1
K

K
ř

i“1
||σpziq||

||σpXq||
, (19)

where ||x|| “ pxT ¨ xq1{2; σpXq denotes the variance of data, which is defined as σpXq “

1
N

N
ř

j“1
pxj ´ zq2; σpziq denotes the fuzzy variation of cluster i, which is defined as σpziq “

1
N

N
ř

j“1
µijpxj ´ ziq

2.

The smaller the value of ScatpKq, the better the compactness of the clustering.
The distance function DispKqmeasuring the separation between clusters is defined as:

DispKq “
Dmax

Dmin

K
ÿ

i“1

p

K
ÿ

k“1

||zi ´ zk||q
´1

, (20)
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where Dmax “ maxt||zi ´ zk||u, Dmin “ mint||zi ´ zk||u , i, k P {2, 3, . . . K}.
The smaller the value of DispKq, the better the separation of clusters.
(10) The WSJ Index (WSJI´) [13], inspired by the CWBI, also uses a linear combination of averaged

fuzzy compactness and separation to measure clustering, which is defined as:

WSJIpKq “ ScatpKq `
SeppKq

SeppKmaxq
(21)

where ScatpKq is given by Equation (19); SeppKq denotes the between-cluster separation, which

is defined as SeppKq “
D2

max

D2
min

K
ř

i“1
p

K
ř

k“1
||zi ´ zk||2

q

´1

, where Dmax “ maxt||zi ´ zk||u, Dmin “

mint||zi ´ zk||u; SeppKmaxq refers to the SeppKqwith the maximum cluster number.
(11) The PBMF index (PBMFI+) [20] estimates within-cluster compactness and large separation

between clusters of fuzzy clustering, i.e.,:

PBMFIpKq “

max
i‰k

t||zi ´ zk||u ˆ
N
ř

j“1
µj1||xi ´ z1||

K
K
ř

i“1

N
ř

j“1
µm

ij ||xj ´ zi||
. (22)

(12) The SVF index (SVFI+) [35] emphasizes on low within-cluster variation (i.e., high compactness)
and large separation between clusters, i.e.,:

SVFIpKq “

K
ř

i“1
min
i‰k

||zi ´ zk||

K
ř

i“1
maxxjPCi µ

m
ij ||xj ´ zi||

. (23)

(13) The WL Index (WLI´) [12] measures both within-cluster compactness and between-cluster
separation of fuzzy clustering. Specifically, it takes both the minimum and the median distances
between clusters as separation, which retains the clusters whose centroids are close to each other. The
index is defined as:

WLIpKq “
WLn

2WLd
(24)

where WLn denotes the fuzzy compactness of clusters, which is defined as WLn “

K
ř

i“1
p

N
ř

j“1
µ2

ij||xj ´ zi||2

N
ř

j“1
µij

q; WLd refers to the separation between clusters, which is defined as WLd “

1
2
pmin

i‰k
t||zi ´ zk||2

u ` median
i‰k

t||zi ´ zk||2
uq, where min

i‰k
t||zi ´ zk||2

u and mediant||zi ´ zk||2
u

denote, respectively, the minimum distance and median distance between any pair of clusters.

4. Experiments and Results

In this section, the performance of the 16 CVIs introduced in Section 3 was evaluated using five
types of multispectral, and four types of hyperspectral, remote sensing datasets (detailed below). For
image clustering, the FCM and K-means algorithms were utilized here. The operational parameters in
FCM were designated in line with previous studies [13]: threshold of iteration termination ε “ e ´ 5,
weighting exponent m “ 2, and the maximum iteration number Max_iter “ 500; while the operational
parameters in K-means as: the pixel change threshold = 0%, and the maximum iteration number
Max_iter “ 500. For each of the images, the two algorithms were implemented with cluster number
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K “ 2, 3, . . . , 10, respectively. To overcome the shortcoming of the two algorithms that often trap
on local optima, depending on the initial solutions [36], each implementation of the clustering was
repeated five times and the best clustering result (with the minimum value of Jm (Equation (1)) or M
(Equation (4)) was retained for CVIs evaluation.

4.1. Datasets

The five multispectral data sets include QuickBird [37], Landsat TM, Landsat ETM+,
GaoFen-1 [38], and FLC1 [39]. Their true/false color maps, the corresponding ground reference
maps and the spectral curves of land use/cover classes were shown in Figure 1. The four hyperspectral
datasets include Hyperion [40], HYDICE [41], ROSIS [42] and AVIRIS [43]. Their false color maps,
ground reference maps and spectral curves of land cover/use classes were presented in Figure 2. The
basic information on the remote sensing datasets employed in our experiments was detailed in Table 1.
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corresponding spectral curves of ground truth classes of QuickBird datasets; (d–f) the corresponding 
maps of Landsat TM datasets; (g–i) the corresponding maps of Landsat ETM+ datasets; (j–l) the 
corresponding maps of GaoFen-1 datasets; (m–o) the corresponding maps of FLC1 datasets. (a) True 
color map; (b) false color map (7, 5, 3); (c) false color map (7, 5, 3); (d) true color map; and (e) false 
color map (bands 12, 9, and 1). 
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corresponding spectral curves of ground truth classes of QuickBird datasets; (d–f) the corresponding
maps of Landsat TM datasets; (g–i) the corresponding maps of Landsat ETM+ datasets; (j–l) the
corresponding maps of GaoFen-1 datasets; (m–o) the corresponding maps of FLC1 datasets. (a) True
color map; (b) false color map (7, 5, 3); (c) false color map (7, 5, 3); (d) true color map; and (e) false color
map (bands 12, 9, and 1).
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Table 1. Basic information of the remote sensing data sets.

D S Y L R B W S GT

QuickBird Multi-spectral
camera 2005 Yalvhe farm,

China 2.4 4 0.45–0.90 100 ˆ 100 Road, paddy field,
and farmland

Landsat TM Thematic
mapper 2005

JingYuetan
reservoir,

China
30 6 0.45–2.35 296 ˆ 295 Forest, farmland,

water, and town

Landsat
ETM+

Enhanced
thematic
mapper

2001
Zhalong
reserve,
China

30 6 0.45–2.35 150 ˆ 139 Marsh, forest, water,
and farmland

Gaofen-1 Wide filed
imager 2015 Sanjiang

Plain, China 16 4 0.45–0.89 200 ˆ 200 Water1, water2,
grass, soil, and sand

FLC1 M7 scanner 1966 Tippecanoe
County, US 30 12 0.40–1.00 84 ˆ 183

Soybeans, oats, corn,
wheat and
red clover

Hyperion Hyperion 2001
Okavango

Delta,
Botswana

30 145 0.40–2.50 126 ˆ 146
Woodland, island
interior, water and
floodplain grasses

HYDICE HYDICE 1995 Washington
DC, US 2 191 0.40–2.40 126 ˆ 82 Roads, trees, trail

and grass

ROSIS ROSIS 2001
University
of Pavia,

Italy
1.3 103 0.43–0.86 125 ˆ 148

Meadows, trees,
asphalt, bricks
and shadows

AVIRIS AVIRIS 1998 Salinas
Valley, USA 3.7 204 0.41–2.45 117 ˆ 143

Vineyard untrained,
celery, fallow
smooth, fallow plow
and stubble

Note: D, datasets; S, sensor; Y, year; L, location; R, resolution (m); B, number of bands; W, spectral wavelength
(µm); S, size of image (pixel by pixels); GT, ground truth classes.

4.2. Results

The nine types of images were clustered by FCM and K-means algorithms respectively, and each
clustering result was evaluated using the corresponding ground-truth data (Figures 1 and 2). Table 2
shows the classification accuracies of the images achieved by the two algorithms. Similarly, both
FCM and K-means generated good classification results, with the overall accuracy greater than 90%
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for seven images. However, considering the length limitation of the paper, the clustering results by
K-means and the corresponding cluster validity result for each image were not presented in as much
detail as those by FCM, but were summarized at the end of the results.

Table 2. Classification accuracies of the remote sensing images acquired by FCM and
K-means algorithms.

Datasets K# Overall Accuracies (%) Kappa Coefficient

FCM K-Means FCM K-Means

QuickBird 3 96.06 96.10 0.9354 0.9361
Landsat TM 4 95.78 95.27 0.9433 0.9363
Landsat ETM+ 4 94.41 96.30 0.9253 0.9565
Gaofen-1 5 98.34 98.79 0.9791 0.9848
FLC1 5 83.10 84.48 0.7847 0.8016
Hyperion 4 87.09 86.79 0.8260 0.8219
HYDICE 4 94.88 96.00 0.9238 0.9403
ROSIS 5 93.85 93.25 0.9129 0.9044
AVIRIS 5 99.63 99.63 0.9946 0.9946

Tables 3–11 illustrated the variations of the 16 CVIs with the number of clusters ranging from
two to 10 by FCM for each image. The optimal cluster numbers of each image are indicated by
the CVIs, shown in bold font. The clustering results of multispectral and hyperspectral datasets by
FCM, respectively, are illustrated in Figures 3 and 4. Note that only four clustering results for each
image are presented, including the optimal one (underlined), one or two close to the optimal, and
those indicated by many CVIs (usually larger than 4) (bold). For example, Figure 3e–h illustrates the
clustering results of Landsat TM image, in which the optimal clustering (Figure 3g) is underlined, the
two near-optimal clustering results (Figure 3f,h) and the obviously-incorrect clustering indicated by
many CVIs (Figure 3e) are also presented.

Table 3. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the QuickBird image.

CVIs
Cluster Number

2 3 * 4 5 6 7 8 9 10

PC+ 0.754 0.800 0.728 0.699 0.658 0.623 0.626 0.593 0.579
PE´ 0.565 0.532 0.749 0.866 1.008 1.134 1.150 1.272 1.341

MPC+ 0.509 0.700 0.637 0.624 0.590 0.560 0.572 0.542 0.533
DBI´ 0.822 0.559 0.692 0.750 0.779 0.845 0.802 0.882 0.915

DI+(e-3) 2.486 3.591 2.539 2.539 2.614 2.614 3.439 3.439 3.439
CHI+(e4) 1.142 2.041 2.026 2.030 1.908 1.779 2.116 1.998 1.971
FSI´(e7) ´0.535 ´6.644 ´7.247 ´7.331 ´7.093 ´6.902 ´7.440 ´7.260 ´7.092

XBI´ 0.160 0.103 0.218 0.236 0.231 0.287 0.237 0.325 0.277
KI´(e3) 1.601 1.027 2.184 2.370 2.312 2.883 2.382 3.266 2.790
TI´(e3) 1.601 1.029 2.189 2.376 2.320 2.894 2.395 3.284 2.808

SCI+ 0.477 2.477 2.516 2.752 2.837 2.554 3.546 3.456 3.349
CWBI´(e-2) 4.076 2.826 4.284 4.964 5.399 6.902 6.592 8.628 8.499

WSJI´ 0.365 0.171 0.256 0.339 0.399 0.648 0.618 1.060 1.023
PBMFI+(e3) 1.588 3.214 0.635 0.336 0.068 0.060 0.022 0.034 0.013

SVFI+ 1.422 2.415 2.621 2.910 3.063 3.252 3.517 3.699 3.885
WLI´ 0.339 0.252 0.325 0.418 0.426 0.453 0.346 0.374 0.388

Note: * denotes the actual cluster number of the image; figures in bold face denote the optimal cluster
numbers of the image identified by the CVIs; the data in the brackets of the first column is a multiplying factor
(e.g., e-3 followed DI+) of the corresponding line.
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Figure 3. Clustering results of the multispectral images (each color represents a cluster). (a) QuickBird, 
K = 2; (b) QuickBird, K = 3; (c) QuickBird, K = 4; (d) QuickBird, K = 5; (e) Landsat TM, K = 2; (f) Landsat 
TM, K = 3; (g) Landsat TM, K = 4; (h) Landsat TM, K = 5; (i) Landsat ETM+, K = 2; (j) Landsat ETM+, 
K = 3; (k) Landsat ETM+, K = 4; (l) Landsat ETM+, K = 5; (m) GaoFen-1, K = 2; (n) GaoFen-1, K = 4; (o) 
GaoFen-1, K = 5; (p) GaoFen-1, K = 6; (q) FLC1, K = 2; (r) FLC1, K = 3; (s) FLC1, K = 5; and (t) FLC1, K 
= 6. 

Figure 3. Clustering results of the multispectral images (each color represents a cluster). (a) QuickBird,
K = 2; (b) QuickBird, K = 3; (c) QuickBird, K = 4; (d) QuickBird, K = 5; (e) Landsat TM, K = 2;
(f) Landsat TM, K = 3; (g) Landsat TM, K = 4; (h) Landsat TM, K = 5; (i) Landsat ETM+, K = 2;
(j) Landsat ETM+, K = 3; (k) Landsat ETM+, K = 4; (l) Landsat ETM+, K = 5; (m) GaoFen-1, K = 2;
(n) GaoFen-1, K = 4; (o) GaoFen-1, K = 5; (p) GaoFen-1, K = 6; (q) FLC1, K = 2; (r) FLC1, K = 3;
(s) FLC1, K = 5; and (t) FLC1, K = 6.
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HYDICE, K = 4; (g) HYDICE, K = 5; (h) HYDICE, K = 6; (i) ROSIS, K = 3; (j) ROSIS, K = 4; (k) ROSIS, K 
= 5; (l) ROSIS, K = 6; (m) AVIRIS, K = 3; (n) AVIRIS, K = 4; (o) AVIRIS, K = 5; and (p) AVIRIS, K = 6. 
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Figure 4. Clustering results of the hyperspectral images by FCM (each color represents a cluster).
(a) Hyperion, K = 2; (b) Hyperion, K = 3; (c) Hyperion, K = 4; (d) Hyperion, K = 5; (e) HYDICE,
K = 3; (f) HYDICE, K = 4; (g) HYDICE, K = 5; (h) HYDICE, K = 6; (i) ROSIS, K = 3; (j) ROSIS, K = 4;
(k) ROSIS, K = 5; (l) ROSIS, K = 6; (m) AVIRIS, K = 3; (n) AVIRIS, K = 4; (o) AVIRIS, K = 5; and
(p) AVIRIS, K = 6.

Table 4. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the Landsat TM image.

CVIs Cluster Number

2 3 4 * 5 6 7 8 9 10

PC+ 0.922 0.796 0.794 0.689 0.657 0.610 0.587 0.571 0.472
PE´ 0.204 0.521 0.587 0.856 0.998 1.168 1.281 1.354 1.593

MPC+ 0.844 0.695 0.726 0.612 0.589 0.545 0.528 0.517 0.413
DBI´ 0.282 0.764 0.601 0.999 0.913 1.055 1.064 1.185 1.522

DI+(e-3) 8.00 7.548 7.783 8.042 8.498 8.893 8.893 8.893 8.893
CHI+(e5) 2.883 2.608 3.261 2.914 2.831 2.568 2.393 2.348 2.053
FSI´(e7) ´6.762 ´7.850 ´8.743 ´8.423 ´8.342 ´8.132 ´8.027 ´7.945 ´5.888

XBI´ 0.044 0.177 0.092 0.599 0.450 0.626 0.564 0.661 2.025
KI´(e4) 0.334 1.335 0.693 4.523 3.402 4.731 4.259 4.996 15.300
TI´(e4) 0.334 1.335 0.693 4.515 3.397 4.721 4.251 4.985 15.188

SCI+ 3.463 3.319 3.876 3.609 3.407 2.916 3.204 2.362 3.439
CWBI´(e-2) 0.151 0.142 0.114 0.291 0.299 0.403 0.425 0.457 0.762

WSJI´ 0.167 0.094 0.057 0.154 0.159 0.274 0.307 0.372 1.015
PBMFI+(e3) 1.014 0.296 0.018 0.013 0.006 0.006 0.001 0.001 0.001

SVFI+ 1.922 2.287 2.982 3.367 3.816 4.106 4.349 4.224 3.137
WLI´ 0.079 0.131 0.172 0.247 0.327 0.361 0.463 0.395 0.293

Note: * denotes the actual cluster number of the image.



Remote Sens. 2016, 8, 295 14 of 22

Table 5. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the ETM+ image.

CVIs
Cluster Number

2 3 4 * 5 6 7 8 9 10

PC+ 0.404 0.812 0.760 0.725 0.703 0.663 0.628 0.617 0.593
PE´ 0.284 0.503 0.673 0.802 0.877 1.012 1.144 1.204 1.300

MPC+ 0.775 0.717 0.680 0.656 0.644 0.607 0.575 0.569 0.548
DBI´ 0.404 0.603 0.674 0.731 0.745 0.861 0.952 0.937 1.055

DI+(e-3) 5.803 7.595 8.256 8.889 8.889 0.104 0.107 0.107 0.114
CHI+(e5) 0.818 0.909 0.929 0.929 0.896 0.893 0.847 0.847 0.822
FSI´(e8) ´0.409 ´0.483 ´0.477 ´0.461 ´0.461 ´0.439 ´0.426 ´0.422 ´0.413

XBI´ 0.047 0.090 0.117 0.169 0.183 0.202 0.234 0.216 0.293
KI´(e4) 0.100 0.188 0.244 0.352 0.382 0.421 0.489 0.452 0.613
TI´(e4) 0.099 0.189 0.244 0.353 0.383 0.422 0.490 0.454 0.615

SCI+ 2.463 3.259 3.388 3.723 4.715 5.137 4.922 4.779 4.884
CWBI´ 0.054 0.059 0.076 0.104 0.112 0.133 0.164 0.174 0.226
WSJI´ 0.162 0.351 0.126 0.214 0.248 0.348 0.515 0.601 1.012

PBMFI+(e3) 1.058 0.156 0.085 0.088 0.004 0.005 0.002 0.014 0.003
SVFI+ 2.173 2.413 3.027 0.760 3.155 3.339 3.521 3.607 3.648
WLI´ 0.093 0.174 0.307 0.265 0.244 0.229 0.259 0.208 0.279

Note: * denotes the actual cluster number of the image.

Table 6. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the GaoFen-1 image.

CVIs
Cluster Number

2 3 4 5 * 6 7 8 9 10

PC+ 0.850 0.751 0.764 0.779 0.735 0.710 0.688 0.669 0.645
PE´ 0.374 0.643 0.663 0.658 1.183 0.900 0.978 1.056 1.140

MPC+ 0.700 0.627 0.620 0.724 0.682 0.662 0.643 0.628 0.606
DBI´ 0.587 0.832 0.767 0.536 0.701 0.740 0.789 0.803 0.896

DI+(e-3) 4.715 1.478 1.470 2.298 2.348 2.688 3.028 2.860 2.965
CHI+(e5) 0.764 0.656 0.681 1.314 1.185 1.262 1.270 1.257 1.197
FSI´(e9) ´0.662 ´1.038 ´1.253 ´1.603 ´1.571 ´1.539 ´1.519 ´1.490 ´1.462

XBI´ 0.100 0.135 0.136 0.077 0.198 0.158 0.140 0.154 0.285
KI´(e4) 0.399 0.541 0.546 0.309 0.791 0.634 0.560 0.617 1.141
TI´(e4) 0.399 0.541 0.546 0.309 0.792 0.635 0.561 0.618 1.141

SCI+ 1.031 1.156 1.364 4.658 3.899 4.468 4.470 4.333 3.992
CWBI´(e-3) 0.147 0.137 0.144 0.139 0.240 0.264 0.268 0.311 0.445

WSJI´ 0.226 0.934 0.128 0.114 0.282 0.348 0.362 0.487 1.015
PBMFI+(e4) 1.049 0.243 0.075 0.053 0.063 0.019 0.011 0.040 0.056

SVFI+ 2.315 2.610 3.027 3.707 3.739 4.193 4.009 4.245 4.165
WLI´ 0.201 0.342 0.307 0.154 0.174 0.202 0.196 0.208 0.226

Note: * denotes the actual cluster number of the image.

Table 7. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the FLC1 image.

CVIs
Cluster Number

2 3 4 5 * 6 7 8 9 10

PC+ 0.760 0.680 0.584 0.602 0.555 0.497 0.451 0.429 0.398
PE´ 0.549 0.834 1.139 1.160 1.343 1.556 1.724 1.831 1.974

MPC+ 0.519 0.520 0.446 0.503 0.466 0.414 0.372 0.358 0.331
DBI´ 0.887 0.909 1.052 0.896 0.937 1.008 1.432 1.410 1.475

DI+(e-2) 0.806 1.330 1.048 1.613 1.365 1.495 1.259 1.259 1.542
CHI+(e4) 1.274 1.537 1.273 1.616 1.521 1.354 1.249 1.194 1.105
FSI´(e6) ´0.666 ´5.029 ´5.479 ´8.809 ´8.573 ´7.979 ´7.511 ´7.200 ´6.794

XBI´ 0.206 0.186 0.380 0.224 0.268 0.334 0.636 0.616 0.576
KI´(e4) 0.299 0.270 0.552 0.325 0.390 0.485 0.924 0.896 0.837
TI´(e4) 0.299 0.270 0.552 0.325 0.390 0.485 0.924 0.896 0.838

SCI+ 0.307 0.624 0.383 0.913 1.089 0.672 0.639 0.815 0.681
CWBI´ 0.126 0.098 0.123 0.109 0.128 0.154 0.221 0.230 0.238
WSJI´ 0.410 0.598 0.294 0.241 0.305 0.425 0.877 0.968 1.049

PBMFI+ 186.178 84.915 27.891 5.076 16.638 5.969 5.374 2.140 0.932
SVFI+ 1.185 1.874 2.389 3.040 3.424 3.680 3.439 3.679 3.803
WLI´ 0.415 0.535 0.708 0.523 0.584 0.709 7.591 0.727 0.777

Note: * denotes the actual cluster number of the image.



Remote Sens. 2016, 8, 295 15 of 22

Table 8. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the Hyperion image.

CVIs
Cluster Number

2 3 4 * 5 6 7 8 9 10

PC+ 0.867 0.759 0.682 0.658 0.596 0.568 0.530 0.494 0.476
PE´ 0.337 0.626 0.869 0.973 1.176 1.293 1.435 1.577 1.666

MPC+ 0.735 0.638 0.576 0.573 0.515 0.496 0.463 0.430 0.417
DBI´ 0.472 0.651 0.732 0.726 0.853 0.856 0.946 1.060 1.032

DI+(e-2) 2.169 2.979 2.837 2.900 3.489 3.332 3.518 2.971 3.916
CHI+(e4) 4.690 5.329 5.328 5.779 5.485 5.383 5.158 4.925 4.846
FSI´(e11) ´4.610 ´6.600 ´6.902 ´7.003 ´6.808 ´6.619 ´6.414 ´6.209 ´6.039

XBI´ 0.061 0.139 0.157 0.149 0.217 0.193 0.228 0.275 0.239
KI´(e3) 1.131 2.552 2.888 2.750 3.995 3.560 4.201 5.064 4.400
TI´(e3) 1.131 2.555 2.892 2.755 4.004 3.569 4.213 5.080 4.416

SCI+ 2.241 3.109 3.161 4.201 4.012 4.586 4.574 4.469 4.605
CWBI´(e-3) 0.440 0.485 0.597 0.651 0.900 0.929 1.118 1.347 1.333

WSJI´ 0.244 0.681 0.207 0.244 0.446 0.491 0.706 1.019 1.020
PBMFI+(e6) 4.131 6.247 1.732 0.319 0.528 0.325 0.184 0.009 0.005

SVFI+ 2.204 2.459 2.867 3.124 3.307 3.536 3.697 3.764 3.885
WLI´ 1.222 0.185 0.241 0.231 0.242 0.244 0.254 0.281 0.307

Note: * denotes the actual cluster number of the image.

Table 9. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the HYDICE image.

CVIs
Cluster Number

2 3 4 * 5 6 7 8 9 10

PC+ 0.752 0.729 0.669 0.621 0.587 0.554 0.541 0.511 0.502
PE´ 0.573 0.717 0.922 1.106 1.246 1.382 1.471 1.598 1.656

MPC+ 0.504 0.594 0.558 0.526 0.505 0.479 0.475 0.450 0.447
DBI´ 0.888 0.669 0.747 0.824 0.828 0.899 0.827 0.888 0.888

DI+(e-2) 1.194 1.070 1.165 1.236 1.081 1.190 1.897 1.098 1.089
CHI+(e4) 1.057 1.494 1.473 1.618 1.606 1.508 1.634 1.587 1.594
FSI´(e12) 0.004 ´1.258 ´1.511 ´1.592 ´1.627 ´1.603 ´1.608 ´1.579 ´1.567

XBI´ 0.196 0.105 0.149 0.168 0.231 0.258 0.223 0.315 0.260
KI´(e3) 2.025 1.084 1.545 1.733 2.393 2.671 2.306 3.258 2.694
TI´(e3) 2.026 1.085 1.547 1.737 2.398 2.678 2.313 3.268 2.704

SCI+ 0.391 1.878 1.906 1.997 2.151 1.733 1.911 1.691 1.901
CWBI´(e-4) 2.538 1.761 2.017 2.395 3.082 3.508 3.585 4.598 4.398

WSJI´ 0.422 1.082 0.229 0.299 0.482 0.621 0.671 1.111 1.034
PBMFI+(e6) 27.978 28.242 7.311 1.490 2.274 1.228 0.250 0.655 0.118

SVFI+ 1.560 2.490 2.928 3.298 3.566 3.689 4.202 4.352 4.349
WLI´ 0.390 0.263 0.288 0.323 0.388 0.406 0.475 0.474 0.387

Note: * denotes the actual cluster number of the image.

Table 10. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the ROSIS image.

CVIs
Cluster Number

2 3 4 5 * 6 7 8 9 10

PC+ 0.703 0.664 0.615 0.594 0.548 0.504 0.477 0.461 0.443
PE´ 0.661 0.878 1.076 1.204 1.381 1.541 1.672 1.775 1.874

MPC+ 0.406 0.495 0.486 0.492 0.457 0.421 0.403 0.393 0.381
DBI´ 1.305 0.796 0.894 0.876 1.001 1.464 1.405 1.371 1.349

DI+(e-2) 0.580 0.656 0.711 0.678 0.676 0.606 0.628 0.562 0.562
CHI+(e4) 0.834 1.323 1.217 1.109 1.000 0.980 0.905 0.844 0.777
FSI´(e11) 2.514 ´1.127 ´1.939 ´2.526 ´2.678 ´2.627 ´2.636 ´2.671 ´2.637

XBI´ 0.427 0.158 0.273 0.213 0.481 0.715 0.666 0.623 0.591
KI´(e4) 0.790 0.293 0.506 0.394 0.890 1.324 1.233 1.154 1.094
TI´(e4) 0.790 0.293 0.506 0.394 0.891 1.325 1.234 1.155 1.095

SCI+ ´0.011 0.316 0.287 0.390 0.206 0.333 0.179 0.147 0.591
CWBI´(e-3) 0.731 0.424 0.493 0.451 0.700 0.872 0.946 1.009 1.082

WSJI´ 0.502 0.743 0.261 0.224 0.432 0.660 0.789 0.913 1.058
PBMFI+(e6) 2.883 1.809 0.068 0.014 0.010 0.015 0.007 0.003 0.002

SVFI+ 0.569 1.720 2.187 2.958 3.290 3.163 3.658 4.011 4.288
WLI´ 0.859 0.453 0.624 0.665 0.872 0.678 0.848 0.857 0.848

Note: * denotes the actual cluster number of the image.
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Table 11. Variations of the 16 CVIs with cluster numbers ranging from 2 to 10 for the AVIRIS image.

CVIs
Cluster Number

2 3 4 5 * 6 7 8 9 10

PC+ 0.843 0.838 0.856 0.732 0.763 0.700 0.681 0.661 0.631
PE´ 0.395 0.451 0.451 0.760 0.691 0.889 0.945 1.014 1.135

MPC+ 0.686 0.757 0.808 0.665 0.715 0.650 0.636 0.619 0.590
DBI´ 0.690 0.557 0.383 0.689 0.617 0.802 0.864 0.949 0.962

DI+(e-2) 0.615 1.524 1.567 0.871 1.198 1.236 1.523 1.297 1.312
CHI+(e4) 2.105 2.991 5.686 4.681 6.460 5.642 6.716 6.230 5.556
FSI´(e11) ´1.098 ´4.465 ´6.317 ´5.999 ´6.803 ´6.631 ´6.331 ´6.151 ´6.004

XBI´ 0.117 0.125 0.065 0.797 0.562 0.948 0.696 0.643 0.829
KI´(e4) 0.195 0.210 0.109 1.335 0.943 1.589 1.168 1.080 1.394
TI´(e4) 0.195 0.210 0.109 1.338 0.946 1.595 1.173 1.086 1.401

SCI+ 1.113 1.958 4.715 3.844 5.684 4.813 5.351 5.869 6.006
CWBI´(e-3) 0.982 0.545 0.407 1.257 1.367 2.082 1.938 1.997 2.376

WSJI´ 0.360 0.665 0.079 0.276 0.335 0.742 0.676 0.721 1.016
PBMFI+(e5) 21.751 14.564 0.855 4.139 0.950 1.279 1.925 0.910 1.002

SVFI+ 1.942 2.653 3.414 3.544 3.620 4.129 3.422 3.220 3.007
WLI´ 0.235 0.213 0.127 0.173 0.149 0.200 0.158 0.152 0.135

Note: * denotes the actual cluster number of the image.

Figure 3a–d shows the clustering results of the simple QuickBird image with the cluster number
K “ 2, 3, 4, 5. The three ground truth classes (road, paddy field, and farmland) of the image were well
identified with cluster number K “ 3 (Figure 3b). As listed in Table 3, the majority of CVIs correctly
indicated the actual cluster number of this simple image (except CHI, FSI, SCI, and SVFI).

Figure 3e-h illustrates the clustering results of the Landsat TM image with the cluster number
K “ 2, 3, 4, 5. Among them, the clustering with K “ 4 succeeded in separating the four ground truth
classes of the image (forest, farmland, water, and town) (Figure 3g). The clustering with K “ 2 was
obviously incorrect since three ground truth classes, i.e., forest, farmland, and town were merged into
one class (Figure 3e). Unfortunately, as shown in Table 4 most indices (DBI, PC, PE, MPC, XBI, KI, TI,
PBMFI, and WLI) underestimated the real situation, which preferred two as the cluster number of the
image; whereas a clear overestimation was given by DI and SVFI; only five CVIs including CHI, FSI,
SCI, CWBI, and WSJI provided the actual cluster number of the image.

Figure 3i–l portrays the clustering results of the Landsat ETM+ image with the cluster number
K “ 2, 3, 4, 5, respectively. The four ground truth classes of the image (marsh, forest, water, and
farmland) were well separated with cluster number K “ 4 (Figure 3k). However, similar to the Landsat
TM experiment, most indices (PE, MPC, XBI, KI, TI, CWBI, PBMFI, and WLI) recommended two
clusters as the optimal partitioning of the image (Table 5). CHI and WSJI were the only two indices
that correctly indicated the cluster number of the image.

Figure 3m–p presents the clustering results of the GaoFen-1 image with the cluster number
K “ 2, 4, 5, 6. The five ground truth classes of the image, namely water1 (light colored), water2 (dark
colored), grass, soil, and sand, were well distinguished with cluster number K “ 5 (Figure 3o). This
was correctly indicated by most CVIs including DBI, CHI, MPC, FSI, XBI, KI, TI, SCI, WSJI, and WLI
(Table 6). For the rest of the CVIs that erroneously indicated the cluster number, most of them (DI, PC,
PE, and PBMFI) suggested two.

Figure 3q–t demonstrates the clustering results of the FLC1 image with the cluster number
K “ 2, 3, 5, 6. The five ground truth classes of the image (soybeans, oats, corn, wheat, and red clover)
were fairly well identified with cluster number K “ 5 (Figure 3s). For the cases of clustering with
K “ 2 and K “ 3, obvious misclassifications were observed, with some separated classes being merged
into one class (Figure 3q,r). As shown in Table 7, there were four CVIs (DI, CHI, FSI, and WSJI) that
provided the actual cluster number (K “ 5) for the image. But five CVIs (DBI, PC, PE, PBMFI, and
WLI) and five others (MPC, XBI, KI, TI, and CWBI) erroneously supported the clustering with cluster
number K “ 2 and K “ 3, respectively.

Figure 4a–d depicts the clustering results of Hyperion data with the cluster number K “ 2, 3, 4, 5.
The four ground truth classes (woodland, island interior, water, and floodplain grasses) were well
classified with cluster number K “ 4 (Figure 4c). Clustering results with other cluster numbers were
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obviously not satisfactory. For example, in the case of clustering with K “ 2, three (without water)
of the four classes were wrongly merged into one class (Figure 4a). This was chosen by half the total
CVIs, namely DBI, PC, PE, MPC, XBI, KI, TI, and CWBI (Table 8). In fact, all of the CVIs, except WSJI,
failed to detect the actual cluster number of the image.

Figure 4e–h provides the clustering results of HYDICE data with the cluster number K “ 3, 4, 5, 6,
of which the clustering with K “ 4 properly separated the four ground truth classes (roads, trees, trail,
and grass) (Figure 4f). In the case of clustering with K “ 3, there were clear errors due to the incorrect
merging of trees and roads (Figure 4e). However, it was still suggested by half of the CVIs, including
DBI, MPC, XBI, KI, CWBI, TI, PBMFI, and WLI (Table 9). Similar to the experiment on Hyperion, WSJI
was the only index returning the correct information about cluster number.

Figure 4i–l lists the clustering results of ROSIS data with the cluster number K “ 3, 4, 5, 6.
Among them, the clustering with K “ 5 successfully classified the five ground truth classes (meadows,
trees, asphalt, bricks, and shadows) (Figure 4k). For the case of K “ 3, trees and shadows were not
distinguished (Figure 4i). However, this incorrect suggestion was also made by as many as half of
the CVIs, including DBI, CHI, MPC, XBI, KI, TI, CWBI, and WLI (Table 10). Once again, only WSJI
correctly indicated the actual cluster number of the image.

Figure 4m–p shows the clustering results of AVIRIS data with the cluster number K “ 3, 4, 5, 6,
in which the five ground truth classes (vineyard untrained, celery, fallow smooth, fallow plow, and
stubble) were well classified with K “ 5 (Figure 4o). However, no CVI was able to indicate the actual
cluster number of the image (Table 11). Instead, most of them (DBI, DI, PC, MPC, XBI, KI, TI, CWBI,
WSJI, and WLI) preferred four clusters for the image, which merged the classes of fallow smooth and
fallow plow (Figure 4n).

Figure 5 illustrates the percentage of successes (correct guesses) achieved by the 16 CVIs. Table 12
summarizes the cluster validity results of the 16 CVIs by FCM on nine types of remote sensing image
datasets, in which the actual cluster number of each image is listed in column K# while those indicated
by CVIs are shown in other columns. From the table it can be seen that WSJI was the only index that
correctly recognized the actual cluster numbers of all of the datasets (including multispectral and
hyperspectral data), except for the AVIRIS image. Thus WSJI, was the most effective and stable index
of all. CHI and FSI succeeded in multispectral datasets but failed in hyperspectral datasets. The DBI,
DI, MPC, SCI, XBI, KI, TI, CWBI, and WLI indices were only effective for two multispectral images.
CVIs including PC, PE, and PBMFI failed, generally, except for the simple QuickBird experiment. SVFI
failed for all images.
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Table 12. The optimal cluster numbers indicated by the CVIs by FCM for each remote sensing image.

Images K# PC PE MPC DBI DI CHI FSI SCI

Multispectral image
QuickBird 3 3 * 3 * 3 * 3 * 3 * 8 8 8

Landsat TM 4 2 2 2 2 7 4 * 4 * 4 *
Landsat ETM+ 4 3 2 2 2 5 4 * 3 7

GaoFen-1 5 2 2 5 * 5 * 2 5 * 5 * 5 *
FLC1 5 2 2 3 2 5 * 5 * 5 * 6

Hyperspectral image
Hyperion 4 2 2 2 2 10 5 6 10
HYDICE 4 2 2 3 3 8 5 6 6

ROSIS 5 4 2 4 4 4 8 6 10
AVIRIS 5 2 2 3 3 4 3 6 10

Images C XBI KI TI CWBI WSJI PBMFI SVFI WLI

Multispectral image
QuickBird 3 3 * 3 * 3 * 3 * 3 * 3 * 10 3 *

Landsat TM 4 2 2 2 4 * 4 * 2 8 2
Landsat ETM+ 4 2 2 2 2 4 * 2 10 2

GaoFen-1 5 5 * 5 * 5 * 3 5 * 2 7 5 *
FLC1 5 3 3 3 3 5 * 2 10 2

Hyperspectral image
Hyperion 4 2 2 2 2 4 * 3 10 3
HYDICE 4 3 3 3 3 4 * 3 9 3

ROSIS 5 3 3 3 3 5 * 2 10 3
AVIRIS 5 4 4 4 4 4 2 7 4

Note: K# in the second column denotes the actual cluster numbers of the images, * denotes that the actual cluster
number of the image was correctly identified by the index.

Table 13 summarizes the cluster validity results of the 16 CVIs by K-means on the remote sensing
images. As expected, the results are similar to those by FCM: WSJI performed the best for both
multispectral and hyperspectral images, followed by CHI and FSI, both of which were effective for
most multispectral images; the DBI, DI, MPC, SCI, XBI, KI, TI, CWBI, and PBMFI performed worse
than the above-mentioned CVIs, with correct identification of cluster numbers for only one or two
multispectral images; PC, PE, and SVFI behaved the worst since they failed for all images.

Table 13. The optimal cluster numbers indicated by the CVIs by K-means for each remote
sensing image.

Images K# PC PE MPC DBI DI CHI FSI SCI

Multispectral image
QuickBird 3 2 2 3 * 3 * 3 * 9 7 7

Landsat
TM 4 2 2 2 2 8 4 * 4 * 4 *

Landsat
ETM+ 4 2 2 2 2 9 4 * 4 * 9

GaoFen-1 5 2 2 5 * 5 * 2 5 * 5 * 5 *

Hyperspectral image
Hyperion 4 2 2 2 2 7 5 5 7
HYDICE 4 2 2 3 3 7 7 7 5

ROSIS 5 2 2 3 3 4 3 9 9
AVIRIS 5 2 2 3 3 4 3 6 10

Images C XBI KI TI CWBI WSJI PBMFI SVFI WLI

Multispectral image
QuickBird 3 3 * 3 * 3 * 3 * 3 * 3 * 10 2

Landsat
TM 4 2 2 2 2 4 * 2 10 2

Landsat
ETM+ 4 2 2 2 3 4 * 2 10 2

GaoFen-1 5 5 * 5 * 5 * 5 * 5 * 2 9 5 *

Hyperspectral image
Hyperion 4 2 2 2 2 4 * 3 10 2
HYDICE 4 5 5 5 3 4 * 2 10 3

ROSIS 5 6 6 6 3 5 * 2 10 3
AVIRIS 5 4 4 4 4 4 2 7 4

Note: * denotes that the actual cluster number of the image was correctly identified by the index; results on
FLC1 image were not included in the table in consideration of the relative lower classification accuracy.
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5. Discussion

In essence, a CVI is designed to measure the degree of compactness and/or separation of clusters.
However, the two indicators are potentially in conflict because the number of clusters is generally
positively associated with compactness, but negatively with separation. Thus, a balanced definition of
compactness and separation is crucial to the designing of CVIs. Most CVIs measure compactness in
a similar way, i.e., the distance between each data point and its cluster center. The major differences
among CVIs, thus, lie in whether the indicator of separation is utilized and how it is defined. In fact,
separation is not included in simple CVIs, whereas it is explicitly presented in all the advanced CVIs
but with non-uniform definitions, e.g., the minimum or maximum distance between clusters. Beside
issues of measuring compactness and separation, the performance of CVIs is also closely related to the
nature of the experimental datasets. For remote sensing data, significant overlaps among clusters often
exist [15]. This property of the datasets must, therefore, be considered by CVIs.

In our experiments, simple CVIs like PC, PE, and MPC were the worst performers. They
underestimated the cluster numbers of most images (Table 10), consistent with previous studies [12,20].
This is mainly because they are built on the assumption that clusters are dispersed far away from
each other, and the belonging (membership) of each point to its cluster is much larger than it is to
other clusters. This assumption is, however, not necessarily valid in the context of the fuzzy property
of remote sensing data. Thus, those CVIs without separation indicators are incapable of effectively
handling such complex datasets.

Some advanced CVIs (including DBI, DI, XBI, KI, TI, PBMFI, SVFI, and WLI) usually performed
better than simple CVIs, but were still far from satisfactory. This is mainly because these CVIs take
the minimum distance (e.g., DBI and XBI) or the maximum distance (e.g., PBMFI) between clusters to
measure separation and this results in a preference for clustering in which clusters are dispersed as far
as possible [12]. However, clusters in remote sensing data are usually allocated closely. Those CVIs,
in which separation exerts a great impact, therefore, underestimate the actual cluster numbers of the
images (Table 10). It was found that some advanced CVIs (CHI, FSI, and SCI), in which the distance
between each cluster center to the global center was taken as separation, worked better than the CVIs
above. The separation measured with the distance from a single cluster to the global center, rather
than the extreme (i.e., the minimum or maximum) distance between clusters, permits the existence
of some clusters with close distances. However, they also failed in all experiments for hyperspectral
images. The small distance between clusters in hyperspectral data weakened the role of separation
in these CVIs, but enhanced the impact of compactness, thereby tending to overestimate the cluster
number (Table 10).

Obviously, the bottleneck of most existing CVIs in handling large scale data (such as remote
sensing data) lies in how to balance the two conflicting factors (compactness and separation) to
correctly indicate the actual cluster number of the data. Fortunately, WSJI (the only index) strikes
the right balance between the two factors through normalization [13], and its effectiveness is clearly
verified in our experiments. This is especially suitable for handling complex remote sensing datasets:
if the cluster number is underestimated, a large compactness emerges to penalize the clustering with
too few clusters; conversely, if the cluster number is overestimated, a large separation appears to
penalize the clustering with too many clusters; it is only when the actual cluster number is defined
that both compactness and separation simultaneously become relatively small. The WSJI seemed to
indicate a non-optimal clustering (K “ 4) only in the AVIRIS experiment, in which fallow smooth and
fallow plow were merged into one cluster (Figure 4n). This is because the between-cluster distance of
the two classes was small (having similar spectral characteristics (Figure 2l)), the value of separation
increased significantly, so the WSJI did not indicate the optimal clustering (K “ 5). However, it was
found that the two classes essentially belonged to the same land cover class (fallow), only differing in
the surface roughness of the ground (smooth or plowed). In this sense, WSJI still detected the “real”
cluster number of the image.
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It should be noted that CVIs, a post-processing procedure applied to clustering, is based on the
assumption that the structure of the dataset is well described by the cluster methods [35]. Otherwise,
the evaluation would be meaningless [44]. Fortunately, the clustering results generated by the FCM
algorithm worked fairly well in our experiments, as indicated by our land cover maps, although
the cluster numbers were not very large. This is mainly due to the fact that it is difficult for FCM to
handle complex images with a larger number of clusters [45,46]. In the future, it would be worthwhile
to investigate more sophisticated methods (e.g., artificial intelligence-based algorithms) for image
clustering. In addition to the 16 CVIs included in the experiments, some types of CVIs (such as
graph-based validity measures [47]) that have recently appeared in the field of pattern recognition
could be explored in further research to test their effectiveness in the area of remote sensing.

There was one dataset for each RS sensor in our experiment because of the length limitation of the
paper. However, some remote sensing images, such as QuickBird versus Gaofen-1, and HYDICE versus
AVIRIS, have great similarities in terms of number of bands, spatial resolution, and spectral wavelength.
Two similar images can, thus, be confidently seen as two scenes of images acquired by effectively
the same sensor. It is noted that the images employed in our experiments were acquired at different
locations, which allows us to analyze the performance of CVIs on various types of landscapes (e.g.,
farmland, marsh and urban). Obviously, this might be helpful for the generalization of conclusions
drawn in this paper.

6. Conclusions

In this paper, we evaluated the effectiveness of 16 representative CVIs on nine types of remote
sensing datasets by utilizing the FCM algorithm for image clustering. From the experimental results, it
was found that, due mainly to inappropriate definitions of separation, most existing CVIs were not
suitable for remote sensing datasets (especially for hyperspectral data), which usually have significant
overlaps between clusters. The only effective index was the WSJI, which indicated the real cluster
numbers of the images (with either multispectral or hyperspectral data), because of its balanced
combination between compactness and separation through normalization. This index, thus, deserves
to be given first priority for future remote sensing classification applications. However, we do not
claim that it would be effective in all applications because of the complexity of remote sensing datasets
(e.g., a variety of formats, spatial scales, and spectral scales, among others). Furthermore, the selected
algorithms and their operational parameters are very important for the performance of CVI, as they
directly control the clustering quality (classification accuracy) of the image. In addition, the land
use/cover classes covered by the images may also impact the cluster validity results. For example,
WSJI failed in the AVIRIS experiment due to the very similar spectral characteristics of the two fallow
classes (fallow smooth and fallow plow). As stated by Pal and Bezdek [48] “no matter how good your
index is, there is a data set out there waiting to trick it (and you)”.
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