29 research outputs found

    Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites

    Get PDF
    Polyimide (PI) nanocomposite reinforced with Fe3O4 nanoparticles (NPs) at various NPs loadings levels of 5.0, 10.0, 15.0, and 20.0 wt% were prepared. The chemical interactions of the Fe3O4 NPs/PI nanocomposites were characterized using Fourier Transform Infrared (FT-IR) spectroscopy. X-ray Diffraction (XRD) results revealed that the addition of NPs had a significant effect on the crystallization of PI. Scanning electron microscope (SEM) and the atomic force microscope (AFM) were used to characterize the dispersion and surface morphology of the Fe3O4 NPs and the PI nanocomposites. The obtained optical band gap of the nanocomposites characterized using Ultraviolet-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS) was decreased with increasing the Fe3O4 loading. Differential scanning calorimetry (DSC) results showed a continuous increase of Tg with increasing the Fe3O4 NPs loading. Some differences were observed in the onset decomposition temperature between the pure PI and nanocomposites since the NPs and the PI matrix were physically entangled together to form the nanocomposites. The contact angle of pure PI was larger than that of Fe3O4/PI nanocomposites films, and increased with increasing the loading of Fe3O4. The degree of swelling was increased with increasing the Fe3O4 loading and the swelling time. The dielectric properties of the nanocomposite were strongly related to the Fe3O4 loading levels. The Fe3O4/PI magnetic property also had been improved with increasing the loading of the magnetic nanoparticles

    An international round-robin study for the analysis of particulate semi-volatile organics by thermal desorption gas chromatography mass spectrometry

    No full text
    <div><p>Thermal desorption gas chromatography mass spectrometry (TD-GC/MS) is becoming more commonly used for the quantification and identification of organic compounds in particulate matter (PM), including ambient and source PM such as diesel particulate matter (DPM). It has been proven as an alternative to the traditional solvent extraction (SE) method and liquid injection gas chromatograph mass spectrometry (LI-GC/MS). However, little information is available on how different types of TD-GC/MS systems compare to each other for analysis of real-world PM samples or to direct LI-GC/MS for analysis of PM components in a test solution. To address this, CanmetENERGY Characterization Laboratory initiated a round robin with the participation of 10 laboratories worldwide. Three sample types were analysed: (i) a test solution with a suite of pure compounds commonly found in PM, analysed by TD-GC/MS and LI-GC/MS; (ii) a DPM sample, analysed by TD-GC/MS and SE; and (iii) an ambient PM sample, analysed by TD-GC/MS. The first part of the study showed good overall performance and comparability between the different TD-GC/MS systems and LI-GC/MS method for the analysis of PM components in a test solution, with some variability of results due to system types and parameters used, concentration of calibration standards, and whether or not an internal standards was used. The analysis of the DPM sample showed greater variability between laboratories and methods as many PM components were present near the detection limit and matrix effects particularly affected the TD-GC/MS analysis of heavier <i>n</i>-alkanes. In the last part of the study, for the analysis of an ambient PM sample by TD-GC/MS, the analysis of variance showed good comparison between labs for polycyclic aromatic hydrocarbons (94% non-significant), but slightly lower for <i>n</i>-alkanes (68%) and biomarkers (57%).</p></div

    Differentiation of coral trout (Plectropomus leopardus) based on an analysis of morphology and complete mitochondrial DNA: Are cryptic species present?

    No full text
    Key Program of the Science and Technology Department Foundation of Fujian Province [2007N0050]; Seed Industry Innovation and Industrialization Project of Fujian Province, ChinaTwo morphotypes of Plectropomus leopardus have been identified; morphometric and meristic analyses show that there is no diagnostic difference between them. A difference in color pattern was the most appropriate phenotypic character with which to distinguish between the two morphotypes. Complete mitochondrial DNA sequencing, however, indicated a clear difference between the two morphotypes. Barcoding analysis revealed no significant difference (P>0.05) in CO1 or ND2 divergence among intramorphotypic individuals, even between geographically separated populations, whereas the intermorphotypic CO1 and ND2 divergences were large enough (averaging 0.95% for CO1 and 1.37% for ND2) to clearly discriminate between the two morphotypes. The color pattern difference, geographical distribution, together with the mtDNA and barcode sequencing data, suggest that the two morphotypes should be of two subspecies or even two species

    Solid Acid Catalyst Based on Single-Layer α-Zirconium Phosphate Nanosheets for Biodiesel Production via Esterification

    Get PDF
    In this study, a solid acid was prepared by the sulfonation of surface modified α-zirconium phosphate (ZrP) single-layer nanosheets (SO3H@ZrP), and the prepared solid acid was investigated for the esterification of oleic acid with methanol to produce biodiesel. For comparison, liquid H2SO4 and commercial Amberlyst® 15 catalyst were also evaluated for the same reaction under the same conditions. The experimental results showed that the SO3H@ZrP solid acid catalyst has a superior catalytic efficiency for the esterification reaction, as well as excellent recyclability. The SO3H@ZrP single-layer solid acid catalyst can be uniformly dispersed in the reaction media, but remains heterogeneous and thus can be easily separated and recycled

    Effective Capture of Carbon Dioxide Using Hydrated Sodium Carbonate Powders

    No full text
    The emission of CO2 has been considered a major cause of greenhouse effects and global warming. The current CO2 capture approaches have their own advantages and weaknesses. We found that free-flowing hydrated sodium carbonate (Na2CO3) powders with 30 wt % water can achieve a very high CO2 sorption capacity of 282 mg/g within 60 min and fast CO2 uptake (90% saturation uptake within 16 min). The results suggest that the alkaline solution resulting from the dissolution of partial Na2CO3 can freely attach onto the hydrated Na2CO3 particles, which provides an excellent gas–liquid interface for CO2 capture, leading to significantly enhanced CO2 sorption capacity and kinetics

    Solid Acid Catalyst Based on Single-Layer α-Zirconium Phosphate Nanosheets for Biodiesel Production via Esterification

    No full text
    In this study, a solid acid was prepared by the sulfonation of surface modified α-zirconium phosphate (ZrP) single-layer nanosheets (SO3H@ZrP), and the prepared solid acid was investigated for the esterification of oleic acid with methanol to produce biodiesel. For comparison, liquid H2SO4 and commercial Amberlyst® 15 catalyst were also evaluated for the same reaction under the same conditions. The experimental results showed that the SO3H@ZrP solid acid catalyst has a superior catalytic efficiency for the esterification reaction, as well as excellent recyclability. The SO3H@ZrP single-layer solid acid catalyst can be uniformly dispersed in the reaction media, but remains heterogeneous and thus can be easily separated and recycled
    corecore