9,597 research outputs found

    Y(2175): Distinguish Hybrid State from Higher Quarkonium

    Get PDF
    The possibility of Y(2175) as a 23D12{^3D_1} ssˉs\bar{s} meson is studied. We study the decay of 23D12{^3D_1} ssˉs\bar{s} from both the 3P0^3P_0 model and the flux tube model, and the results are similar in the two models. We show that the decay patterns of 11^{--} strangeonium hybrid and 23D12{^3D_1} ssˉs\bar{s} are very different. The experimental search of the decay modes KKKK, KKK^{*}K^{*}, K(1460)KK(1460)K, h1(1380)ηh_1(1380)\eta is suggested to distinguish the two pictures. Measuring the KKK^{*}K^{*} partial width ratios is crucial to discriminate the 23D12{^3D_1} from the 33S13{^3S_1} ssˉs\bar{s} assignment.Comment: 13 pages, 8 figure

    The η(2225)\eta(2225) observed by the BES Collaboration

    Full text link
    In the framework of the 3P0^3P_0 meson decay model, the strong decays of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are investigated. It is found that in the presence of the initial state mass being 2.24 GeV, the total widths of the 31S03 ^1S_0 and 41S04 ^1S_0 ssˉs\bar{s} states are about 438 MeV and 125 MeV, respectively. Also, when the initial state mass varies from 2220 to 2400 MeV, the total width of the 41S04 ^1S_0 ssˉs\bar{s} state varies from about 100 to 132 MeV, while the total width of the 31S03 ^1S_0 ssˉs\bar{s} state varies from about 400 to 594 MeV. A comparison of the predicted widths and the experimental result of (0.19±0.030.06+0.04)(0.19\pm 0.03^{+0.04}_{-0.06}) GeV, the width of the η(2225)\eta(2225) with a mass of (2.240.020.02+0.03+0.03)(2.24^{+0.03+0.03}_{-0.02-0.02}) GeV recently observed by the BES Collaboration in the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi\to\gamma\phi\phi\to\gamma K^+K^-K^0_SK^0_L, suggests that it would be very difficult to identify the η(2225)\eta(2225) as the 31S03 ^1S_0 ssˉs\bar{s} state, and the η(2225)\eta(2225) seams a good candidate for the 41S04 ^1S_0 ssˉs\bar{s} state.Comment: 14 pages, 3 figures, typos corrected, Accepted by Physical Review

    Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    Full text link
    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.Comment: 4 pages, 3 figure
    corecore