118 research outputs found

    Addressing Domain Shift via Knowledge Space Sharing for Generalized Zero-Shot Industrial Fault Diagnosis

    Full text link
    Fault diagnosis is a critical aspect of industrial safety, and supervised industrial fault diagnosis has been extensively researched. However, obtaining fault samples of all categories for model training can be challenging due to cost and safety concerns. As a result, the generalized zero-shot industrial fault diagnosis has gained attention as it aims to diagnose both seen and unseen faults. Nevertheless, the lack of unseen fault data for training poses a challenging domain shift problem (DSP), where unseen faults are often identified as seen faults. In this article, we propose a knowledge space sharing (KSS) model to address the DSP in the generalized zero-shot industrial fault diagnosis task. The KSS model includes a generation mechanism (KSS-G) and a discrimination mechanism (KSS-D). KSS-G generates samples for rare faults by recombining transferable attribute features extracted from seen samples under the guidance of auxiliary knowledge. KSS-D is trained in a supervised way with the help of generated samples, which aims to address the DSP by modeling seen categories in the knowledge space. KSS-D avoids misclassifying rare faults as seen faults and identifies seen fault samples. We conduct generalized zero-shot diagnosis experiments on the benchmark Tennessee-Eastman process, and our results show that our approach outperforms state-of-the-art methods for the generalized zero-shot industrial fault diagnosis problem

    Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning

    Full text link
    Dynamic environments pose great challenges for expensive optimization problems, as the objective functions of these problems change over time and thus require remarkable computational resources to track the optimal solutions. Although data-driven evolutionary optimization and Bayesian optimization (BO) approaches have shown promise in solving expensive optimization problems in static environments, the attempts to develop such approaches in dynamic environments remain rarely unexplored. In this paper, we propose a simple yet effective meta-learning-based optimization framework for solving expensive dynamic optimization problems. This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner, either in data-driven evolutionary optimization or BO approaches. In particular, the framework consists of two unique components: 1) the meta-learning component, in which a gradient-based meta-learning approach is adopted to learn experience (effective model parameters) across different dynamics along the optimization process. 2) the adaptation component, where the learned experience (model parameters) is used as the initial parameters for fast adaptation in the dynamic environment based on few shot samples. By doing so, the optimization process is able to quickly initiate the search in a new environment within a strictly restricted computational budget. Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms on common benchmark test problems under different dynamic characteristics

    A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version.To promote research on dynamic constrained multiobjective optimization, we first propose a group of generic test problems with challenging characteristics, including different modes of the true Pareto front (e.g., convexity–concavity and connectedness–disconnectedness) and the changing feasible region. Subsequently, motivated by the challenges presented by dynamism and constraints, we design a dynamic constrained multiobjective optimization algorithm with a nondominated solution selection operator, a mating selection strategy, a population selection operator, a change detection method, and a change response strategy. The designed nondominated solution selection operator can obtain a nondominated population with diversity when the environment changes. The mating selection strategy and population selection operator can adaptively handle infeasible solutions. If a change is detected, the proposed change response strategy reuses some portion of the old solutions in combination with randomly generated solutions to reinitialize the population, and a steady-state update method is designed to improve the retained previous solutions. Experimental results show that the proposed test problems can be used to clearly distinguish the performance of algorithms, and that the proposed algorithm is very competitive for solving dynamic constrained multiobjective optimization problems in comparison with state-of-the-art algorithms

    Short communication: QTL mapping for ear tip-barrenness in maize

    Get PDF
    Barren tip on corn ear is an important agronomic trait in maize, which is highly associated with grain yield. Understanding the genetic basis of tip-barrenness may help to reduce the ear tip-barrenness in breeding programs. In this study, ear tip-barrenness was evaluated in two environments in a F2:3 population, and it showed significant genotypic variation for ear tip-barrenness in both environments. Using mixed-model composite interval mapping method, three additive effects quantitative trait loci (QTL) for ear tip-barrenness were mapped on chromosomes 2, 3 and 6, respectively. They explained 16.6% of the phenotypic variation, and no significant QTL × Environment interactions and digenic interactions were detected. The results indicated that additive effect was the main genetic basis for ear tip-barrenness in maize. This is the first report of QTL mapped for ear tip-barrenness in maize

    Multi-population evolution based dynamic constrained multiobjective optimization under diverse changing environments

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Dynamic constrained multiobjective optimization involves irregular changes in the distribution of the true Pareto-optimal fronts, drastic changes in the feasible region caused by constraints, and the movement directions and magnitudes of the optimal distance variables due to diverse changing environments. To solve these problems, we propose a multi-population evolution based dynamic constrained multiobjective optimization algorithm. In this algorithm, we design a tribe classification operator to divide the population into different tribes according to a feasibility check and the objective values, which is beneficial for driving the population toward the feasible region and Pareto-optimal fronts. Meanwhile, a population selection strategy is proposed to identify promising solutions from tribes and exploit them to update the population. The optimal values of the distance variables vary differently with dynamic environments, thus, we design a dynamic response strategy for solutions in different tribes that estimates their distances to approach the Pareto-optimal fronts and regenerates a promising population when detecting environmental changes. In addition, a scalable generator is designed to simulate diverse movement directions and magnitudes of the optimal distance variables in real-world problems under dynamic environments, obtaining a set of improved test problems. Experimental results show the effectiveness of test problems, and the proposed algorithm is impressively competitive with several chosen state-of-the-art competitors

    Genome-wide identification and analysis of heterotic loci in three maize hybrids

    Get PDF
    Heterosis, or hybrid vigour, is a predominant phenomenon in plant genetics, serving as the basis of crop hybrid breeding, but the causative loci and genes underlying heterosis remain unclear in many crops. Here, we present a large-scale genetic analysis using 5360 offsprings from three elite maize hybrids, which identifies 628 loci underlying 19 yield-related traits with relatively high mapping resolutions. Heterotic pattern investigations of the 628 loci show that numerous loci, mostly with complete–incomplete dominance (the major one) or overdominance effects (the secondary one) for heterozygous genotypes and nearly equal proportion of advantageous alleles from both parental lines, are the major causes of strong heterosis in these hybrids. Follow-up studies for 17 heterotic loci in an independent experiment using 2225 F2 individuals suggest most heterotic effects are roughly stable between environments with a small variation. Candidate gene analysis for one major heterotic locus (ub3) in maize implies that there may exist some common genes contributing to crop heterosis. These results provide a community resource for genetics studies in maize and new implications for heterosis in plants

    Photocatalytic Degradation of Organic Pollutants in Water Using Graphene Oxide Composite

    Get PDF
    Developing sustainable and less-expensive technique is always challenging task in water treatment process. This chapter explores the recent development of photocatalysis technique in organic pollutant removal from the water. Particularly, advantages of graphene oxide in promoting the catalytic performance of semiconductor, metal nanoparticle and polymer based photocatalyst materials. Owing to high internal surface area and rapid electron conducting property of graphene oxide fostering as backbone scaffold for effective hetero-photocatalyst loading, and rapid photo-charge separation enables effective degradation of pollutant. This chapter summaries the recent development of graphene oxide composite (metal oxide, metal nanoparticle, metal chalcogenides, and polymers) in semiconductor photocatalysis process towards environmental remediation application

    Thematic issue on “bio-inspired learning for data analysis”

    No full text
    Jin Y, Ding J, Ding Y. Thematic issue on “bio-inspired learning for data analysis”. Memetic Computing. 2017;9(1):1-2

    Special issue on “Data-driven evolutionary optimization”

    No full text
    Jin Y, Ding J. Special issue on “Data-driven evolutionary optimization”. Soft Computing. 2017;21(20):5867-5868
    corecore